Document Type : Research articles

Authors

1 Department of Medical Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

2 Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran

3 Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

4 Department of Biochemistry and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Background: Ischemia-reperfusion injury (IRI) is an injurious phenomenon that is the primary determinant of liver dysfunction after surgery and transplantation. The present evidence demonstrated that connexin 43 (Cx43), Cx32, and Cx26 are the essential gap junction proteins involved in the liver IRI. This study aimed to characterize the beneficial effects of silibinin on Cx43, Cx32, and Cx26 gene expression during warm hepatic ischemia-reperfusion (IR).  
Materials and Methods: A total of 32 male Wistar rats weighing 250-300 g were randomly divided into four equal groups of eight animals in each group as follows: 1) control group (laparotomy+normal saline), 2) laparotomy+silibinin (30 mg/kg) (SILI), 3) liver IR procedure+normal saline (IR), and 4) liver IR procedure+silibinin (30 mg/kg) (IR+SILI). After 1 h of ischemia followed by 3 h of reperfusion, blood samples and tissue sections were gathered to assess the serum liver markers and evaluate the liver histological changes as well as gene expression, respectively.
Results: The obtained data proved no considerable differences between control and SILI groups in all experiments. Furthermore, the gene expression of Cx26, Cx32, and Cx43 was significantly induced in the IR group, compared to the control group. Silibinin markedly reduced Cx26 and Cx32 mRNA expression, whereas increased Cx43 mRNA expression. Moreover, serum alanine aminotransferase and aspartate aminotransferase levels were markedly elevated in the IR group (P<0.001), compared to the control group. However, in the IR+SILI group, silibinin could significantly decline these elevations, compared to the IR group. In addition, silibinin diminished hepatic tissue damages during IR.
Conclusion: Silibinin could attenuate liver injury through better cell-to-cell communication via lowering Cx32 and Cx26, as well as increasing Cx43 gene expression, respectively.

Keywords

  1. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: a systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33(Suppl 1):S57-70. doi: 10.1016/j.ijsu.2016.05.050. [PubMed: 27255130].
  2. Vardanian AJ, Busuttil RW, Kupiec-Weglinski JW. Molecular mediators of liver ischemia and reperfusion injury: a brief review. Mol Med. 2008;14(5-6):337-45. doi: 10.2119/2007-00134.Vardanian. [PubMed: 18292799].
  3. Franchello A, Gilbo N, David E, Ricchiuti A, Romagnoli R, Cerutti E, et al. Ischemic preconditioning (IP) of the liver as a safe and protective technique against ischemia/reperfusion injury (IRI). Am J Transplant. 2009;9(7):1629-39. doi: 10.1111/j.1600-6143.2009.02680.x. [PubMed: 19519822].
  4. Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther. 2015;153:90-106. doi: 10.1016/j.pharmthera.2015.06.005. [PubMed: 26073311].
  5. Maes M, Vinken M. Connexin-based signaling and drug-induced hepatotoxicity. J Clin Transl Res. 2017;3(Suppl 1):189-98. doi: 10.18053/jctres.03.2017S1.004. [PubMed: 28825041].
  6. Abazari O, Divsalar A, Ghobadi R. Inhibitory effects of oxali-Platin as a chemotherapeutic drug on the function and structure of bovine liver catalase. J Biomol Struct Dyn. 2020;38(2):609-15. doi: 10.1080/07391102.2019.1581088. [PubMed: 30767651].
  7. Wu S, Yao W, Chen C, Chen H, Huang F, Liu Y, et al. Connexin 32 deficiency protects the liver against ischemia/reperfusion injury. Eur J Pharmacol. 2020;876:173056. doi: 10.1016/j.ejphar.2020.173056. [PubMed: 32147436].
  8. Maes M, McGill MR, da Silva TC, Abels C, Lebofsky M, de Araújo CM, et al. Involvement of connexin43 in acetaminophen-induced liver injury. Biochim Biophys Acta. 2016;1862(6):1111-21. doi: 10.1016/j.bbadis.2016.02.007. [PubMed: 26912412].
  9. Nakashima Y, Kohno H, El-Assal ON, Dhar DK, Ono T, Yamanoi A, et al. Sequential changes of connexin32 and connexin26 in ischemia-reperfusion of the liver in rats. Hepatol Res. 2003;27(1):67-75. doi: 10.1016/s1386-6346(03)00188-8. [PubMed: 12957210].
  10. Jeyaraman MM, Srisakuldee W, Nickel BE, Kardami E. Connexin43 phosphorylation and cytoprotection in the heart. Biochim Biophys Acta. 2012;1818(8):2009-13. doi: 10.1016/j.bbamem.2011.06.023. [PubMed: 21763271].
  11. Musavi H, Abazari O, Barartabar Z, Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P, et al. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch Physiol Biochem. 2020;8:1-9. doi: 10.1080/13813455.2020.1826530. [PubMed: 33030073].
  12. Raina K, Kumar S, Dhar D, Agarwal R. Silibinin and colorectal cancer chemoprevention: a comprehensive review on mechanisms and efficacy. J Biomed Res. 2016;30(6):452-65. doi: 10.7555/JBR.30.20150111. [PubMed: 27476880].
  13. Singh RP, Gu M, Agarwal R. Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Res. 2008;68(6):2043-50. doi: 10.1158/0008-5472.CAN-07-6247. [PubMed: 18339887].
  14. Shafaei Z, Abazari O, Divsalar A, Ghalandari B, Poursoleiman A, Saboury AA, et al. Effect of a synthesized amyl-glycine1, 10-phenanthroline platinum nitrate on structure and stability of human blood carrier protein, albumin: spectroscopic and modeling approaches. J Fluoresc. 2017;27(5):1829-38. doi: 10.1007/s10895-017-2120-4. [PubMed: 28555407].
  15. Kim S, Choi M, Lee H, Lee S, Kim S, Kim W, et al. Silibinin suppresses TNF-α-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules. 2009;14(11):4300-11. doi: 10.3390/molecules14114300. [PubMed: 19924065].
  16. Wu H, Tang S, Huang Z, Zhou Q, Zhang P, Chen Z. Hepatoprotective effects and mechanisms of action of triterpenoids from lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes) on α-amanitin-induced liver injury in mice. Int J Med Mushrooms. 2016;18(9):841-50. doi: 10.1615/IntJMedMushrooms.v18.i9.80. [PubMed: 27910775].
  17. Bosch-Barrera J, Corominas-Faja B, Cuyas E, Martin-Castillo B, Brunet J, Menendez JA. Silibinin administration improves hepatic failure due to extensive liver infiltration in a breast cancer patient. Anticancer Res. 2014;34(8):4323-7. [PubMed: 25075066].
  18. Ghobadi M, Ghanaat K, Valizadeh-Dizgikan A, Gohari G, Roadi B, Khonakdar-Tarsi A. The effect of dexamethasone on expression of inducible nitric oxide synthase gene during liver warm ischemia-reperfusion in rat. Res Mol Med. 2015;3(3):17-22.
  19. Wang N, De Vuyst E, Ponsaerts R, Boengler K, Palacios-Prado N, Wauman J, et al. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2013;108(1):309. doi: 10.1007/s00395-012-0309-x. [PubMed: 23184389].
  20. Chen Y, Wang L, Zhang L, Chen B, Yang L, Li X, et al. Inhibition of connexin 43 hemichannels alleviates cerebral ischemia/reperfusion injury via the TLR4 signaling pathway. Front Cell Neurosci. 2018;12:372. doi: 10.3389/fncel.2018.00372. [PubMed: 30386214].
  21. Akbari-Kordkheyli V, Azizi S, Khonakdar-Tarsi A. Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model. Iran J Basic Med Sci. 2019;22(7):789-96. doi: 10.22038/ijbms.2019.34967.8313. [PubMed: 32373301].
  22. Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology. 2000;32(2):169-73. doi: 10.1053/jhep.2000.9323. [PubMed: 10915720].
  23. Kupiec-Weglinski JW, Busuttil RW. Ischemia and reperfusion injury in liver transplantation. Transpl Proc. 2005;37(4):1653-6. doi: 10.1016/j.transproceed.2005.03.134.
  24. Abazari O, Shafaei Z, Divsalar A, Eslami-Moghadam M, Ghalandari B, Saboury AA. Probing the biological evaluations of a new designed Pt (II) complex using spectroscopic and theoretical approaches: Human hemoglobin as a target. J Biomol Struct Dyns. 2016;34(5):1123-31. doi: 10.1080/07391102.2015.1071280. [PubMed: 26274094].
  25. Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Vellve A, Li M, et al. Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat Biotechnol. 2012;30(2):179-83. doi: 10.1038/nbt.2089. [PubMed: 22252509].
  26. Qajari NM, Shafaroudi MM, Gholami M, Khonakdar-Tarsi A. Silibinin treatment results in reducing OPA1&MFN1 genes expression in a rat model hepatic ischemia–reperfusion. Mol Biol Rep. 2020;47(5):3271-80. doi: 10.1007/s11033-020-05383-w. [PubMed: 32249375].
  27. Zare Z, Dizaj TN, Lohrasbi A, Sheikhalishahi ZS, Asadi A, Zakeri M, et al. Silibinin inhibits TGF-β-induced MMP-2 and MMP-9 through Smad Signaling pathway in colorectal cancer HT-29 cells. Basic Clin Cancer Res. 2020;12(2):79-88.
  28. Chen W, Li D. Reactive oxygen species (ROS)-responsive nanomedicine for solving ischemia-reperfusion injury. Front Chem. 2020;8:732. doi: 10.3389/fchem.2020.00732. [PubMed: 32974285].
  29. Dar WA, Sullivan E, Bynon JS, Eltzschig H, Ju C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 2019;39(5):788-801. doi: 10.1111/liv.14091. [PubMed: 30843314].
  30. Azam S, Jakaria M, Kim IS, Kim J, Haque M, Choi DK. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10:1000. doi: 10.3389/fimmu.2019.01000. [PubMed: 31134076].
  31. Song JH, Kim KJ, Lee BY. Silibinin suppresses mediators of inflammation through the inhibition of TLR4-TAK1 pathway in LPS-induced RAW264. 7 cells. J Food Nutr Res. 2016;4:515-21. doi: 10.12691/jfnr-4-8-5.
  32. Younis NN, Shaheen MA, Mahmoud MF. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S. J Surg Res. 2016;204(2):398-409. doi: 10.1016/j.jss.2016.04.069. [PubMed: 27565076].