Document Type : Research articles

Authors

1 1. Department of Orthopaedic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China 2. Department of Pain Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China

2 Department of Orthopaedic Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China

3 Department of Orthopaedic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China

Abstract

Background: High dose intravenous (i.t.) injection of methylprednisolone (MPSS) for spinal cord injury (SCI) is clinically contro- versial.
Objectives: This study aimed to investigate whether i.t. MPSS would have a beneficial effect on SCI and whether or not it is a safe operation for SCI patients.
Methods: An animal experiment was conducted to explore the safety and feasibility of i.t. Administration of MPSS. Male Sprague- Dawley rats were randomly divided into four groups: (1) sham group, i.t. injection of normal saline (NS) (n = 25); (2) control group, SCI surgery (created using the Infinite Horizon IH-400 impactor) with i.t. injection of NS (n = 25); (3) i.t. MPSS1 group, SCI with i.t. injection of MPSS by a pulse therapy (n = 25); (4) i.t. MPSS2 group, SCI with i.t. injection of MPSS intermittently (n = 25). Malondialde- hyde (MDA), superoxide dismutase (SOD), and inflammatory cytokines in serum were measured at 6h, 24h, 48h, 7d, and 14d after surgery with commercial assay kits. Glial fibrillary acidic protein (GFAP) level was observed at 14 days after surgery by immunohis- tochemistry. Motor evoked potentials (MEP) and somatosensory evoked potential (SEP) were monitored and recorded separately before surgery and 1, 7, and 14 days after surgery. Also, locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale.
Results: The results showed that the levels of MDA and SOD, and three inflammatory cytokines, including IL-1b, IL-6, and TNF-?
were reduced in i.t. MPSS groups than that of the control group (all P < 0.05). The expression of GFAP was inhibited after i.t. MPSS treatment. The amplitude was reduced, and the latency period of SEP and MEP recovery was prolonged (all P < 0.05) after MPSS administration. In addition, the recovery of limb function (BBB score) was significantly ameliorated (P < 0.05) in SCI rats treated with MPSS compared with the control group.
Conclusions: Our results demonstrated that i.t. MPSS was a potential strategy for reducing the secondary damage after SCI, espe- cially the MPSS pulse therapy.

Keywords

  1. Bowers CA, Kundu B, Rosenbluth J, Hawryluk GW. Patients with spinal cord injuries favor administration of methylprednisolone. PLoS One. 2016;11(1). e0145991. doi: 10.1371/journal.pone.0145991. [PubMed: 26789007]. [PubMed Central: PMC4720442].
  2. Choi SH, Sung CH, Heo DR, Jeong SY, Kang CN. Incidence of acute spinal cord injury and associated complications of methylprednisolone therapy: A national population-based study in South Korea. Spinal Cord. 2020;58(2):232-7. doi: 10.1038/s41393-019-0357-2. [PubMed: 31527724].
  3. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597-604. [PubMed: 9168289].
  4. Chikuda H, Yasunaga H, Takeshita K, Horiguchi H, Kawaguchi H, Ohe K, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: A propensity-matched analysis using a nationwide administrative database. Emerg Med J. 2014;31(3):201-6. doi: 10.1136/emermed-2012-202058. [PubMed: 23449889]. [PubMed Central: PMC3932981].
  5. Jongen PJ, Stavrakaki I, Voet B, Hoogervorst E, van Munster E, Linssen WH, et al. Patient-reported adverse effects of high-dose intravenous methylprednisolone treatment: A prospective web-based multi-center study in multiple sclerosis patients with a relapse. J Neurol. 2016;263(8):1641-51. doi: 10.1007/s00415-016-8183-3. [PubMed: 27272956]. [PubMed Central: PMC4971042].
  6. Liu Z, Yang Y, He L, Pang M, Luo C, Liu B, et al. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology. 2019;93(9):e841-50. doi: 10.1212/WNL.0000000000007998. [PubMed: 31358617].
  7. Hidalgo de la Cruz M, Miranda Acuna JA, Lozano Ros A, Vega Catalina M, Salinero Paniagua E, Clemente Ricote G, et al. Hepatotoxicity after high-dose intravenous methylprednisolone in multiple sclerosis patients. Clin Case Rep. 2017;5(8):1210-2. doi: 10.1002/ccr3.1033. [PubMed: 28781825]. [PubMed Central: PMC5538224].
  8. Rijsdijk M, van Wijck AJ, Kalkman CJ, Meulenhoff PC, Grafe MR, Steinauer J, et al. Safety assessment and pharmacokinetics of intrathecal methylprednisolone acetate in dogs. Anesthesiology. 2012;116(1):170-81. doi: 10.1097/ALN.0b013e31823cf035. [PubMed: 22139590].
  9. Kotani N, Kushikata T, Hashimoto H, Kimura F, Muraoka M, Yodono M, et al. Intrathecal methylprednisolone for intractable postherpetic neuralgia. N Engl J Med. 2000;343(21):1514-9. doi: 10.1056/NEJM200011233432102. [PubMed: 11087880].
  10. Wang KF, Liu HY, Wang B, Wang HM, Qian YL, Zhu ZQ, et al. [Effects of intrathecal injection of methylprednisolone sodium succinate in acute spinal cord injury rabbits]. Zhonghua Wai Ke Za Zhi. 2013;51(5):426-31. Chinese. [PubMed: 23958166].
  11. Vanicky I, Urdzikova L, Saganova K, Mars̆ala M. Intrathecal methylprednisolone does not improve outcome after severe spinal cord injury in the rat. Neurosci Res Commun. 2002;31(3):183-91. doi: 10.1002/nrc.10051.
  12. Villa JV, Villamar DMP, Zapien JAT, Espinoza LB, Garcia JH, Garcia RS. Current developments in antioxidant therapies for spinal cord injury. Spinal cord injury therapy. IntechOpen; 2019.
  13. Cao Q, Zhang YP, Iannotti C, DeVries WH, Xu XM, Shields CB, et al. Functional and electrophysiological changes after graded traumatic spinal cord injury in adult rat. Exp Neurol. 2005;191 Suppl 1:S3-S16. doi: 10.1016/j.expneurol.2004.08.026. [PubMed: 15629760].
  14. Celik F, Gocmez C, Kamasak K, Tufek A, Guzel A, Tokgoz O, et al. The comparison of neuroprotective effects of intrathecal dexmedetomidine and metilprednisolone in spinal cord injury. Int J Surg. 2013;11(5):414-8. doi: 10.1016/j.ijsu.2013.03.008. [PubMed: 23542594].
  15. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol. 1996;139(2):244-56. doi: 10.1006/exnr.1996.0098. [PubMed: 8654527].
  16. Cemil B, Topuz K, Demircan MN, Kurt G, Tun K, Kutlay M, et al. Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien). 2010;152(9):1583-90. discussion 1590. doi: 10.1007/s00701-010-0702-x. [PubMed: 20535508].
  17. Ye J, Qin Y, Tang Y, Ma M, Wang P, Huang L, et al. Methylprednisolone inhibits the proliferation of endogenous neural stem cells in nonhuman primates with spinal cord injury. J Neurosurg Spine. 2018;29(2):199-207. doi: 10.3171/2017.12.SPINE17669. [PubMed: 29775163].
  18. Ito Y, Sugimoto Y, Tomioka M, Kai N, Tanaka M. Does high dose methylprednisolone sodium succinate really improve neurological status in patient with acute cervical cord injury?: A prospective study about neurological recovery and early complications. Spine (Phila Pa 1976). 2009;34(20):2121-4. doi: 10.1097/BRS.0b013e3181b613c7. [PubMed: 19713878].
  19. Ozturk AM, Sozbilen MC, Sevgili E, Dagci T, Ozyalcin H, Armagan G. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury. Injury. 2018;49(6):1038-45. doi: 10.1016/j.injury.2018.03.021. [PubMed: 29602490].
  20. Gocmez C, Celik F, Kamasak K, Kaplan M, Uzar E, Arikanoglu A, et al. Effects of intrathecal caffeic acid phenethyl ester and methylprednisolone on oxidant/antioxidant status in traumatic spinal cord injuries. J Neurol Surg A Cent Eur Neurosurg. 2015;76(1):20-4. doi: 10.1055/s-0034-1371513. [PubMed: 24871822].
  21. Kim HS, Kwack SJ, Lee BM. Lipid peroxidation, antioxidant enzymes, and benzo[a]pyrene-quinones in the blood of rats treated with benzo[a]pyrene. Chem Biol Interact. 2000;127(2):139-50. doi: 10.1016/s0009-2797(00)00177-0. [PubMed: 10936229].
  22. Koh E, Ryu D, Surh J. Ratio of malondialdehyde to hydroperoxides and color change as an index of thermal oxidation of linoleic acid and linolenic acid. J Food Process Preserv. 2015;39(3):318-26. doi: 10.1111/jfpp.12411.
  23. Hall ED, Springer JE. Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRx. 2004;1(1):80-100. doi: 10.1602/neurorx.1.1.80. [PubMed: 15717009]. [PubMed Central: PMC534914].
  24. Zhang N, Wei G, Ye J, Yang L, Hong Y, Liu G, et al. Effect of curcumin on acute spinal cord injury in mice via inhibition of inflammation and TAK1 pathway. Pharmacol Rep. 2017;69(5):1001-6. doi: 10.1016/j.pharep.2017.02.012. [PubMed: 28941865].
  25. Moeton M, Kanski R, Stassen OM, Sluijs JA, Geerts D, van Tijn P, et al. Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion. FASEB J. 2014;28(7):2942-54. doi: 10.1096/fj.13-245837. [PubMed: 24696300].
  26. Kjell J, Olson L, Abrams MB. Improved recovery from spinal cord injury in rats with chronic parvovirus serotype-1a infection. Spinal Cord. 2016;54(7):517-20. doi: 10.1038/sc.2015.208. [PubMed: 26690859]. [PubMed Central: PMC5399164].
  27. Haupt WF, Pawlik G, Thiel A. Initial and serial evoked potentials in cerebrovascular critical care patients. J Clin Neurophysiol. 2006;23(5):389-94. doi: 10.1097/01.wnp.0000223454.04161.cf. [PubMed: 17016148].
  28. Nardone R, Holler Y, Thomschewski A, Holler P, Bergmann J, Golaszewski S, et al. Central motor conduction studies in patients with spinal cord disorders: A review. Spinal Cord. 2014;52(6):420-7. doi: 10.1038/sc.2014.48. [PubMed: 24752292].
  29. Machida M, Yamada T, Krain L, Toriyama S, Yarita M. Magnetic stimulation: Examination of motor function in patients with cervical spine or cord lesion. J Spinal Disord. 1991;4(2):123-30. [PubMed: 1806076].
  30. van Dongen EP, ter Beek HT, Schepens MA, Morshuis WJ, Langemeijer HJ, de Boer A, et al. Within-patient variability of myogenic motor-evoked potentials to multipulse transcranial electrical stimulation during two levels of partial neuromuscular blockade in aortic surgery. Anesth Analg. 1999;88(1):22-7. doi: 10.1097/00000539-199901000-00005. [PubMed: 9895060].