Document Type : Review articles

Authors

1 Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.

2 Department of surgery, Qom University of medical science, Qom, Iran.

3 Digestive Disease Research Center, Tehran University of Medical Science, Tehran, Iran.

4 Department of Reproductive Health, School of Nursing and Midwifery, Tehran University of Medical Science, Tehran, Iran.

Abstract

Context: Subacute thyroiditis has been classified as an autoinflammatory condition and is mainly caused by a viral infection. According to the pathogenesis of SARS-CoV2 infection, which is mainly based on the uncontrolled inflammatory immune response, several studies have investigated the possible association between SARS-CoV2 and subacute thyroiditis. The present study aimed to review and organize the studies that have investigated the possible association between SARS-CoV2 and subacute thyroiditis.
Evidence Acquisition: Initially, we observed and provided evidence on the possible roles and mechanisms of SARS-CoV2 in inflammatory and autoimmune diseases, and then we discussed the findings on the association between subacute thyroiditis and SARS-CoV2 infection.
Results: Investigation of other autoimmune and inflammatory disorders, and previous studies on the role of viruses in the pathogenesis of subacute thyroiditis, as well as studies on the inflammatory mechanism of SARS-CoV2 infection support the hypothesis that SARS-CoV2 may initiate subacute thyroiditis.
Conclusions: The existing evidence suggests that subacute thyroiditis should be considered a late symptom of COVID-19.

Keywords

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020. doi: 10.1056/NEJMoa2001017. [PubMed: 31978945].
  2. Roussel Y, Giraud-Gatineau A, Jimeno M-T, Rolain J-M, Zandotti C, Colson P, et al. SARS-CoV-2: fear versus data. International journal of antimicrobial agents. 2020:105947. doi: 10.1016/j.ijantimicag.2020.105947 . [PubMed: 32201354].
  3. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine. 2020;46(5):846-8. doi: 10.1007/s00134-020-05991-x . [PubMed: 32125452].
  4. Quan C, Li C, Ma H, Li Y, Zhang H. Immunopathogenesis of Coronavirus-Induced Acute Respiratory Distress Syndrome (ARDS): Potential Infection-Associated Hemophagocytic Lymphohistiocytosis. Clinical Microbiology Reviews. 2020;34(1). doi: 10.1128/CMR.00074-20 . [PubMed: 33055229].
  5. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LF. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology. 2020:1-12. doi: 10.1038/s41577-020-0311-8. [PubMed: 32346093].
  6. Zhou Y, Han T, Chen J, Hou C, Hua L, He S, et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID‐19. Clinical and Translational Science. 2020. doi: 10.1111/cts.12805. [PubMed: 32315487].
  7. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, et al. Molecular mimicry and autoimmunity. Journal of Autoimmunity. 2018;95:100-23. doi: 10.1016/j.jaut.2018.10.012 . [PubMed: 30509385].
  8. Filippi CM, von Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes. 2008;57(11):2863-71. doi: 10.2337/db07-1023. [PubMed: 18971433].
  9. Ates I. A case of subacute thyroiditis associated with Covid-19 infection. Journal of endocrinological investigation. 2020:1-2. doi: 10.1007/s40618-020-01316-3. [PubMed: 32504458].
  10. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barré syndrome associated with SARS-CoV-2. New England Journal of Medicine. 2020. doi: 10.1056/NEJMc2009191. [PubMed: 32302082].
  11. Samuels MH. Subacute, silent, and postpartum thyroiditis. Medical Clinics. 2012;96(2):223-33. doi: 10.1016/j.mcna.2012.01.003. [PubMed: 22443972].
  12. Stasiak M, Michalak R, Stasiak B, Lewinski A. Clinical characteristics of subacute thyroiditis is different than it used to be–current state based on 15 years own material. Neuroendocrinol Lett. 2018;39:101-7. [PubMed: 30860680].
  13. Desailloud R, Hober D. Viruses and thyroiditis: an update. Virology journal. 2009;6(1):5. doi: 10.1186/1743-422X-6-5 . [PubMed: 19138419].
  14. Martino E, Buratti L, Bartalena L, Mariotti S, Cupini C, Aghini-Lombardi F, et al. High prevalence of subacute thyroiditis during summer season in Italy. Journal of endocrinological investigation. 1987;10(3):321-3. doi: 10.1007/BF03348138. [PubMed: 3624803].
  15. Sato M. Virus-like particles in the follicular epithelium of the thyroid from a patient with subacute thyroiditis (De Quervain). Acta Pathologica Japonica. 1975;25(4):499-501. [PubMed: 1180050].
  16. HAMBURGER JI. The various presentations of thyroiditis: Diagnostic considerations. Annals of internal medicine. 1986;104(2):219-24. doi: 10.7326/0003-4819-104-2-219. [PubMed: 3511814].
  17. Eylan E, Zmucky R, Sheba C. Mumps Virus and Subacute Thyroiditis. Evidence of a Causal Association. Lancet. 1957:1062-3. doi: 10.1016/s0140-6736(57)91438-1. [PubMed: 13429875].
  18. Zhang J-j, Dong X, Cao Y-y, Yuan Y-d, Yang Y-b, Yan Y-q, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020. doi: 10.1111/all.14238 . [PubMed: 32077115].
  19. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020. doi: 10.1016/j.cell.2020.03.045. [PubMed: 32275855].
  20. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature microbiology. 2020;5(4):562-9. doi: 10.1038/s41564-020-0688-y. [PubMed: 32094589].
  21. Rolling T, Hohl TM, Zhai B. Minority report: the intestinal mycobiota in systemic infections. Current opinion in microbiology. 2020;56:1-6. doi: 10.1016/j.mib.2020.05.004 . [PubMed: 32599521].
  22. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. doi: 10.1016/j.cell.2020.02.052. [PubMed: 32142651].
  23. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, et al. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. American journal of respiratory and critical care medicine. 2020;201(11):1372-9. doi: 10.1164/rccm.202003-0543OC. [PubMed: 32242738].
  24. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clinical Infectious Diseases. 2020. doi: 10.1093/cid/ciaa248 . [PubMed: 32161940].
  25. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cellular & molecular immunology. 2020;17(5):533-5. doi: 10.1038/s41423-020-0402-2. [PubMed: 32203188].
  26. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host & Microbe. 2020. doi: 10.1016/j.chom.2020.04.017. [PubMed: 32407669].
  27. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. National Science Review. 2020. doi: 10.1093/nsr/nwaa041. [PubMed: 34676125].
  28. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020. doi: 10.1016/j.cell.2020.04.026. [PubMed: 32416070].
  29. Channappanavar R, Perlman S, editors. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Seminars in immunopathology; 2017: Springer. doi: 10.1007/s00281-017-0629-x. [PubMed: 28466096].
  30. Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F. Role of monocytes/macrophages in covid-19 pathogenesis: implications for therapy. Infection and Drug Resistance. 2020;13:2485. doi: 10.2147/IDR.S258639. [PubMed: 32801787].
  31. Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Frontiers in immunology. 2020;11:1446. doi: 10.3389/fimmu.2020.01446. [PubMed: 32612617].
  32. Ley K, Kansas GS. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nature Reviews Immunology. 2004;4(5):325-36. doi: 10.1038/nri1351. [PubMed: 15122198].
  33. Gray JI, Westerhof LM, MacLeod MK. The roles of resident, central and effector memory CD 4 T‐cells in protective immunity following infection or vaccination. Immunology. 2018;154(4):574-81. doi: 10.1111/imm.12929. [PubMed: 29570776].
  34. Devarajan P, Chen Z. Autoimmune effector memory T cells: the bad and the good. Immunologic research. 2013;57(1-3):12-22. doi: 10.1007/s12026-013-8448-1. [PubMed: 24203440].
  35. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan. China (February 17, 2020). 2019. doi: 10.1093/cid/ciaa248. [PubMed: 32161940].
  36. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv. 2020. doi: 10.1038/s41586-020-2598-9. [PubMed: 32726801].
  37. Novelli L, Barbati C, Ceccarelli F, Perricone C, Spinelli F, Alessandri C, et al. CD44v3 and CD44v6 isoforms on T cells are able to discriminate different disease activity degrees and phenotypes in systemic lupus erythematosus patients. Lupus. 2019;28(5):621-8. doi: 10.1177/0961203319838063. [PubMed: 30907297].
  38. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet respiratory medicine. 2020;8(4):420-2. doi: 10.1016/S2213-2600(20)30076-X. [PubMed: 32085846].
  39. Liblau RS, Wong FS, Mars LT, Santamaria P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity. 2002;17(1):1-6. doi: 10.1016/s1074-7613(02)00338-2. [PubMed: 12150886].
  40. Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cellular & molecular immunology. 2018;15(5):458-69. doi: 10.1038/s41423-018-0004-4. [PubMed: 29563615].
  41. Thevarajan I, Nguyen TH, Koutsakos M, Druce J, Caly L, van de Sandt CE, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature medicine. 2020;26(4):453-5. doi: 10.1038/s41591-020-0819-2. [PubMed: 32284614].
  42. Wolff F, Dahma H, Duterme C, Van den Wijngaert S, Vandenberg O, Cotton F, et al. Monitoring antibody response following SARS-CoV-2 infection: diagnostic efficiency of 4 automated immunoassays. Diagnostic Microbiology and Infectious Disease. 2020;98(3):115140. doi: 10.1016/j.diagmicrobio.2020.115140. [PubMed: 32829098].
  43. Lei Q, Li Y, Hou Hy, Wang F, Ouyang Zq, Zhang Y, et al. Antibody dynamics to SARS‐CoV‐2 in asymptomatic COVID‐19 infections. Allergy. 2020. doi: 10.1111/all.14622. [PubMed: 33040337].
  44. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7. [PubMed: 32015507].
  45. Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al. Antibody detection and dynamic characteristics in patients with coronavirus disease 2019. Clinical Infectious Diseases. 2020;71(8):1930-4. doi: 10.1093/cid/ciaa461. [PubMed: 32306047].
  46. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, et al. Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI insight. 2019;4(4). doi: 10.1172/jci.insight.123158. [PubMed: 30830861].
  47. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020:1-6. doi: 10.1007/s12250-020-00207-4. [PubMed: 32125642].
  48. Ruscitti P, Berardicurti O, Di Benedetto P, Cipriani P, Iagnocco A, Shoenfeld Y, et al. Severe COVID-19, another piece in the puzzle of the hyperferritinemic syndrome. An immunomodulatory perspective to alleviate the storm. Frontiers in immunology. 2020;11. doi: 10.3389/fimmu.2020.01130. [PubMed: 32574264].
  49. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmunity Reviews. 2020. doi: 10.1016/j.autrev.2020.102538. [PubMed: 32268212].
  50. Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity. 2020. doi: 10.1016/j.immuni.2020.06.017. [PubMed: 32610079].
  51. Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D’Cruz DP, Shoenfeld Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC medicine. 2013;11(1):185. doi: 10.1186/1741-7015-11-185. [PubMed: 23968282].
  52. Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunological reviews. 2020;296(1):205-19. doi: 10.1111/imr.12897. [PubMed: 32658335].
  53. Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open biology. 2020;10(9):200160. doi: 10.1098/rsob.200160. [PubMed: 32961074].
  54. Fajgenbaum DC, June CH. Cytokine Storm. New England Journal of Medicine. 2020;383(23):2255-73. doi: 10.1056/NEJMra2026131. [PubMed: 33264547].
  55. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical microbiology reviews. 2006;19(1):80-94. doi: 10.1128/CMR.19.1.80-94.2006. [PubMed: 16418524].
  56. Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya J-M. Bystander activation and autoimmunity. Journal of autoimmunity. 2019;103:102301. doi: 10.1016/j.jaut.2019.06.012. [PubMed: 31326230].
  57. Lucchese G, Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmunity Reviews. 2020. doi: 10.1016/j.autrev.2020.102556. [PubMed: 32361194].
  58. Kanduc D, Shoenfeld Y. On the molecular determinants the SARS-CoV-2 attack. Clinical Immunology (Orlando, Fla). 2020. doi: 10.1016/j.clim.2020.108426. [PubMed: 32311462].
  59. Vojdani A, Kharrazian D. Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clinical Immunology (Orlando, Fla). 2020;217:108480. doi: 10.1016/j.clim.2020.108480. [PubMed: 32461193].
  60. Fujii H, Tsuji T, Yuba T, Tanaka S, Suga Y, Matsuyama A, et al. High levels of anti-SSA/Ro antibodies in COVID-19 patients with severe respiratory failure: a case-based review. Clinical rheumatology. 2020:1-5. doi: 10.1007/s10067-020-05359-y. [PubMed: 32844364].
  61. Zhang Y, Cao W, Jiang W, Xiao M, Li Y, Tang N, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. Journal of thrombosis and thrombolysis. 2020;50(3):580-6. doi: 10.1007/s11239-020-02182-9. [PubMed: 32648093].
  62. Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thrombosis research. 2020. doi: 10.1016/j.thromres.2020.06.029. [PubMed: 32788101].
  63. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515). doi: 10.1126/science.abd4585. [PubMed: 32972996].
  64. Rodríguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. Journal of autoimmunity. 2020;114:102506. doi: 10.1016/j.jaut.2020.102506. [PubMed: 32563547].
  65. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020. doi: 10.1212/WNL.0000000000009619. [PubMed: 32303650].
  66. Coen M, Jeanson G, Almeida LAC, Hübers A, Stierlin F, Najjar I, et al. Guillain-Barré syndrome as a complication of SARS-CoV-2 infection. Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.04.074. [PubMed: 32360440].
  67. xAlberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurology-Neuroimmunology Neuroinflammation. 2020;7(4). doi: 10.1038/cmi.2017.142. [PubMed: 29375121].
  68. Lucchese G, Flöel A. SARS-CoV-2 and Guillain-Barré syndrome: molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell Stress and Chaperones. 2020;25(5):731-5. doi: 10.1007/s12192-020-01145-6. [PubMed: 32729001].
  69. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020;11(7):995-8. doi: 10.1021/acschemneuro.0c00122. [PubMed: 32167747].
  70. Alfadda AA, Sallam RM, Elawad GE, AlDhukair H, Alyahya MM. Subacute thyroiditis: clinical presentation and long term outcome. International journal of endocrinology. 2014;2014. doi: 10.1155/2014/794943. [PubMed: 24803929].
  71. Nishihara E, Ohye H, Amino N, Takata K, Arishima T, Kudo T, et al. Clinical characteristics of 852 patients with subacute thyroiditis before treatment. Internal Medicine. 2008;47(8):725-9. doi: 10.2169/internalmedicine.47.0740. [PubMed: 18421188].
  72. Yanai H, Hakoshima M, Katsuyama H. Differences in clinical and laboratory findings among graves’ disease, painless thyroiditis and subacute thyroiditis patients with hyperthyroidism. Journal of Endocrinology and Metabolism. 2019;9(3):37-42. doi: 10.14740/jem572
  73. Vural Ç, Paksoy N, Gök ND, Yazal K. Subacute granulomatous (De Quervain's) thyroiditis: Fine-needle aspiration cytology and ultrasonographic characteristics of 21 cases. Cytojournal. 2015;12. doi: 10.4103/1742-6413.157479. [PubMed: 26085833].
  74. Stasiak M, Tymoniuk B, Stasiak B, Lewiński A. The risk of recurrence of subacute thyroiditis is HLA-dependent. International journal of molecular sciences. 2019;20(5):1089. doi: 10.3390/ijms20051089. [PubMed: 30832406].
  75. YAMAMOTO M, SAITO S, SAKURADA T, TAMURA M, KUDO Y, YOSHIDA K, et al. Recurrence of subacute thyroiditis over 10 years after the first attack in three cases. Endocrinologia Japonica. 1988;35(6):833-9. doi: 10.1507/endocrj1954.35.833. [PubMed: 3250859].
  76. VOLPÉ R. The management of subacute (DeQuervain's) thyroiditis. Thyroid. 1993;3(3):253-5. doi: 10.1089/thy.1993.3.253. [PubMed: 8257868].
  77. Benbassat C, Olchovsky D, Tsvetov G, Shimon I. Subacute thyroiditis: clinical characteristics and treatment outcome in fifty-six consecutive patients diagnosed between 1999 and 2005. Journal of endocrinological investigation. 2007;30(8):631-5. doi: 10.1007/BF03347442. [PubMed: 17923793].
  78. De Bruin TW, Riekhoff FP, De Boer JJ. An outbreak of thyrotoxicosis due to atypical subacute thyroiditis. The Journal of Clinical Endocrinology & Metabolism. 1990;70(2):396-402. doi: 10.1210/jcem-70-2-396. [PubMed: 2298855].
  79. VOLPÉ R, ROW VV, EZRIN C. Circulating viral and thyroid antibodies in subacute thyroiditis. The Journal of Clinical Endocrinology & Metabolism. 1967;27(9):1275-84. doi: 10.1210/jcem-27-9-1275. [PubMed: 4292248].
  80. Joasoo A, Robertson P, Murray I. Viral antibodies in thyrotoxicosis. The Lancet. 1975;306(7925):125. doi: 10.1016/s0140-6736(75)90022-7. [PubMed: 49711].
  81. Stanček D, Stančeková-Gressnerová M, Janotka M, Hnilica P, Oravec D. Isolation and some serological and epidemiological data on the viruses recovered from patients with subacute thyroiditis de Quervain. Medical microbiology and immunology. 1975;161(2):133-44. doi: 10.1007/BF02121755. [PubMed: 806773].
  82. Stancek D, Ciampor F, Mucha V, Hnilica P, Stancekova M. Morphological, cytological and biological observations on viruses isolated from patients with subacute thyroiditis de Quervain. Acta Virologica. 1976;20(3):183-8. [PubMed: 9797].
  83. Debons-Guillemin M-C, Valla J, Gazeau J, Wybier-Franqui J, Giron M-L, Toubert M-E, et al. No evidence of spumaretrovirus infection markers in 19 cases of De Quervain's thyroiditis. AIDS research and human retroviruses. 1992;8(9):1547-. doi: 10.1089/aid.1992.8.1547. [PubMed: 1333778].
  84. Schweizer M, TUREK R, HAHN H, SCHLIEPHAKE A, NETZER K-O, EDER G, et al. Markers of foamy virus infections in monkeys, apes, and accidentally infected humans: appropriate testing fails to confirm suspected foamy virus prevalence in humans. AIDS research and human retroviruses. 1995;11(1):161-70. doi: 10.1089/aid.1995.11.161. [PubMed: 7734189].
  85. Parmar RC, Bavdekar SB, Sahu DR, Warke S, Kamat JR. Thyroiditis as a presenting feature of mumps. The Pediatric infectious disease journal. 2001;20(6):637-8. doi: 10.1097/00006454-200106000-00023 . [PubMed: 11419514].
  86. Luotola K, Hyöty H, Salmi J, Miettinen A, Helin H, Pasternack A. Evaluation of infectious etiology in subacute thyroiditis–lack of association with coxsackievirus infection. Apmis. 1998;106(1‐6):500-4. doi: 10.1111/j.1699-0463.1998.tb01378.x. [PubMed: 9637274].
  87. Swann NH. Acute thyroiditis: five cases associated with adenovirus infection. Metabolism. 1964;13(10):908-10. doi: 10.1016/0026-0495(64)90080-0. [PubMed: 14223044].
  88. Larouche V, Tamilia M. Cytomegalovirus-mononucleosis-induced thyroiditis in an immunocompetent patient. Endocrinology, Diabetes & Metabolism Case Reports. 2017;2017(1). doi: 10.1530/EDM-17-0142. [PubMed: 29204277].
  89. NAKAMURA S, KOSAKA J, SUGIMOTO M, WATANABE H, SHIMA H, TAKUNO H. Silent thyroiditis following rubella. Endocrinologia japonica. 1990;37(1):79-85. doi: 10.1507/endocrj1954.37.79. [PubMed: 2384053].
  90. Brouqui P, Raoult D, Conte-Devolx B. Coxsackie thyroiditis. Annals of internal medicine. 1991;114(12):1063-4. doi: 10.7326/0003-4819-114-12-1063_2. [PubMed: 1851403].
  91. Martín G, JM LC, editors. Subacute thyroiditis associated with positive antibodies to the Epstein-Barr virus. Anales de Medicina Interna (Madrid, Spain: 1984); 2000. [PubMed: 11109652].
  92. Mori K, Yoshida K, Funato T, Ishii T, Nomura T, Fukuzawa H, et al. Failure in detection of Epstein-Barr virus and cytomegalovirus in specimen obtained by fine needle aspiration biopsy of thyroid in patients with subacute thyroiditis. The Tohoku journal of experimental medicine. 1998;186(1):13-7. doi: 10.1620/tjem.186.13. [PubMed: 9915102].
  93. Narayan SS, Lorenz K, Ukkat J, Hoang-Vu C, Trojanowicz B. Angiotensin converting enzymes ACE and ACE2 in thyroid cancer progression. Neoplasma. 2020;67(2):402-9. doi: 10.4149/neo_2019_190506N405. [PubMed: 31847529].
  94. Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngnitejeu S, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. Journal of Endocrinological Investigation. 2020:1-6. doi: 10.1007/s40618-020-01436-w. [PubMed: 33025553].
  95. Chen M, Zhou W, Xu W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study. Thyroid. 2020. doi: 10.1089/thy.2020.0363. [PubMed: 32600165].
  96. Lania A, Sandri MT, Cellini M, Mirani M, Lavezzi E, Mazziotti G. Thyrotoxicosis in patients with COVID-19: the THYRCOV study. European Journal of Endocrinology. 2020;183(4):381-7. doi: 10.1530/EJE-20-0335. [PubMed: 32698147].
  97. Shrestha RT, Hennessey J. Acute and subacute, and Riedel’s thyroiditis.  Endotext [Internet]: MDText. com, Inc.; 2015. [PubMed: 25905408].
  98. Kojima M, Nakamura S, Oyama T, Sugihara S, Sakata N, Masawa N. Cellular composition of subacute thyroiditis. An immunohistochemical study of six cases. Pathology-Research and Practice. 2002;198(12):833-7. doi: 10.1078/0344-0338-00344. [PubMed: 12608662].
  99. Toda S, Nishimura T, Yamada S, Koike N, Yonemitsu N, Watanabe K, et al. Immunohistochemical expression of growth factors in subacute thyroiditis and their effects on thyroid folliculogenesis and angiogenesis in collagen gel matrix culture. The Journal of pathology. 1999;188(4):415-22. doi: 10.1002/(SICI)1096-9896(199908)188:4<415::AID-PATH380>3.0.CO;2-H. [PubMed: 10440753].
  100. Fariduddin MM, Singh G. Thyroiditis.  StatPearls [Internet]: StatPearls Publishing; 2020. doi: 10.1515/jbcpp-2020-0121.
  101. Kramer AB, Roozendaal C, Dullaart RP. Familial occurrence of subacute thyroiditis associated with human leukocyte antigen-B35. Thyroid. 2004;14(7):544-7. doi: 10.1089/1050725041517048. [PubMed: 15307945].
  102. Kacprzak-Bergman I, Nowakowska B. Influence of genetic factors on the susceptibility to HBV infection, its clinical pictures, and responsiveness to HBV vaccination. Archivum immunologiae et therapiae experimentalis. 2005;53(2):139-42. [PubMed: 15928582].
  103. Chen K, Wei Y, Sharp GC, Braley‐Mullen H. Decreasing TNF‐α results in less fibrosis and earlier resolution of granulomatous experimental autoimmune thyroiditis. Journal of leukocyte biology. 2007;81(1):306-14. doi: 10.1189/jlb.0606402. [PubMed: 17046971].
  104. Toda S, Tokuda Y, Koike N, Yonemitsu N, Watanabe K, Koike K, et al. Growth factor-expressing mast cells accumulate at the thyroid tissue-regenerative site of subacute thyroiditis. Thyroid. 2000;10(5):381-6. doi: 10.1089/thy.2000.10.381. [PubMed: 10884184].
  105. Luotola K, Mantula P, Salmi J, Haapala AM, Laippala P, Hurme M. Allele 2 of interleukin‐1 receptor antagonist gene increases the risk of thyroid peroxidase antibodies in subacute thyroiditis. Apmis. 2001;109(6):454-60. doi: 10.1034/j.1600-0463.2001.090608.x. [PubMed: 11506478].
  106. Hernán JM, Corder E, Uzcategui M, Garcia M, Sostre S, Garcia A. Subacute thyroiditis and dyserythropoesis after influenza vaccination suggesting immune dysregulation. Boletin de la Asociacion Medica de Puerto Rico. 2011;103(2):48-52. [PubMed: 22111471].
  107. Orlov S, Salari F, Kashat L, Walfish PG. Induction of painless thyroiditis in patients receiving programmed death 1 receptor immunotherapy for metastatic malignancies. The Journal of Clinical Endocrinology & Metabolism. 2015;100(5):1738-41. doi: 10.1210/jc.2014-4560. [PubMed: 25751110].
  108. Amenomori M, Mori T, Fukuda Y, SUGAWA H, NISHIDA N, FURUKAWA M, et al. Incidence and characteristics of thyroid dysfunction following interferon therapy in patients with chronic hepatitis C. Internal medicine. 1998;37(3):246-52. doi: 10.2169/internalmedicine.37.246. [PubMed: 9617858].
  109. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Bmj. 2020;368. doi: 10.1136/bmj.m1091. [PubMed: 32217556].
  110. Guven M. Subacute Thyroiditis in the Course of Coronavirus Disease 2019: A Case Report. Journal of Endocrinology and Metabolism. 2020;10(3-4):110-2. doi: 10.14740/jem678.
  111. Ippolito S, Dentali F, Tanda M. SARS-CoV-2: a potential trigger for subacute thyroiditis? Insights from a case report. Journal of Endocrinological Investigation. 2020:1. doi: 10.1007/s40618-020-01312-7. [PubMed: 32488726].
  112. Sohrabpour S, Heidari F, Karimi E, Ansari R, Tajdini A, Heidari F. Subacute Thyroiditis in COVID-19 Patients. European Thyroid Journal. 2020;9(6):322-4. doi: 10.1159/000511707. [PubMed: 33708633].
  113. Brancatella A, Ricci D, Cappellani D, Viola N, Sgrò D, Santini F, et al. Is subacute thyroiditis an underestimated manifestation of SARS-CoV-2 infection? Insights from a case series. The Journal of Clinical Endocrinology & Metabolism. 2020;105(10):e3742-e6. doi: 10.1210/clinem/dgaa537. [PubMed: 32780854].
  114. Campos-Barrera E, Alvarez-Cisneros T, Davalos-Fuentes M. Subacute Thyroiditis Associated with COVID-19. Case reports in endocrinology. 2020;2020. doi: 10.1155/2020/8891539. [PubMed: 33005461].
  115. Mattar SAM, Koh SJQ, Chandran SR, Cherng BPZ. Subacute thyroiditis associated with COVID-19. BMJ Case Reports CP. 2020;13(8):e237336. doi: 10.1136/bcr-2020-237336. [PubMed: 32843467].
  116. Ruggeri RM, Campennì A, Siracusa M, Frazzetto G, Gullo D. Subacute thyroiditis in a patient infected with SARS-COV-2: an endocrine complication linked to the COVID-19 pandemic. Hormones. 2020:1-3. doi: 10.1007/s42000-020-00230-w. [PubMed: 32676935].
  117. Asfuroglu Kalkan E, Ates I. A case of subacute thyroiditis associated with Covid-19 infection. J Endocrinol Invest. 2020;43(8):1173-4. doi: 10.1007/s40618-020-01316-3. [PubMed: 32504458].
  118. Brancatella A, Ricci D, Viola N, Sgrò D, Santini F, Latrofa F. Subacute Thyroiditis After Sars-COV-2 Infection. The Journal of clinical endocrinology and metabolism. 2020;105(7). doi: 10.1210/clinem/dgaa276. [PubMed: 32436948].