Document Type : Research articles

Authors

1 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

2 Baqiyatallah Research Center for gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran. Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Abstract

Background: Cervical cancer is one of the most common cancers in women throughout the globe. According to reports, currently used cervical cancer therapies are harmful to patients. These treatments have also revealed certain adverse effects that may have a severe impact on the lives of women who are afflicted with this kind of cervical cancer. To combat cancer, fewer hazardous anti-tumor therapies are required. Natural products, such as herbal medicine, have been revealed to have a variety of biological impacts. Pistacia atlantica gum extract was tested on the TC1 cell line to see whether it had any anti-proliferative effects.
Objectives: This study aimed to determine the anti-proliferative effect of Pistacia atlantica gum extract on the TC1 cell line.
Methods: Gum extract from dried and milled Pistacia atlantica was analyzed using Gas Chromatography-Mass Spectrometry. The cells were divided into five groups at random, including one for the negative control, one for the positive control, and three for the therapy. Cells from TC1 mice were given the extracts of Pistacia atlantica gum at three different doses (100, 200, and 400 mg/mL). To determine the viability of the cells, reactive oxygen species (ROS) generation, and the concentrations of caspases-3, -8, and -9, researchers used a commercial enzyme-linked immuno-absorbent assay kit.
Results: Results showed that, in comparison to the negative control and most other treatment groups, the Pistacia atlantica gum extract group (400 mg/ml) significantly decreased cell viability (70.138±8.464) and significantly increased apoptosis percentage (71.66±4.041), produced significantly more ROS (15.69±0.799), and significantly increased lactate dehydrogenase release (17.83±0.772) in TC1 cells (P<0.05). In addition, the activity of caspase-8 (0.097±0.007) and caspase-9 (0.065±0.004) increased significantly (P<0.05) in this study.
Conclusion: Our findings indicated that Pistacia atlantica gum extract could drastically decrease cell viability and increase apoptosis in the TC1 cell line, similar to the anti-cancer medication doxorubicin.

Keywords

  1. Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. The Lancet. 2019; 393(10167):169-82. doi: 10.1016/S0140-6736(18)32470-X.
  2. Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer. Exp Mol Pathol. 2019; 106:7-16. doi: 10.1016/j.yexmp.2018.11.010. [PMID: 30471246]
  3. Shafabakhsh R, Reiter RJ, Mirzaei H, Teymoordash SN, Asemi Z. Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol. 2019;234(12):21670-82. doi: 10.1002/jcp.28865. [PMID: 31131897]
  4. Lagana AS, Garzon S, Raffaelli R, Ban Frangež H, Lukanovič D, Franchi M. Vaginal Stenosis After Cervical Cancer Treatments: Challenges for Reconstructive Surgery. J Invest Surg. 2019;19:154. doi: 10.1080/08941939.2019.1695987. [PMID: 31171918]
  5. Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019;19(1):154. doi: 10.1186/s12935-019-0868-0. [PMID: 31171918]
  6. Hsiao YH, Lin CW, Wang PH, Hsin MC, Yang SF. The potential of chinese herbal medicines in the treatment of cervical cancer. Integer Cancer Ther. 2019; 18:1534735419861693. doi:  10.1177/1534735419861693. [PMID: 31271066]
  7. Tavakoli J, Soq KH, Yousefi A, Estakhr P, Dalvi M, Khaneghah AM. Antioxidant activity of Pistacia atlantica var mutica kernel oil and it’s unsaponifiable matters. Int J Food Sci Tech. 2019;56(12):5336-45. doi: 10.1007/s13197-019-04004-0. [PMID: 31749481]
  8. Hosseini S, Nili-Ahmadabadi A, Nachvak SM, Dastan D, Moradi S, Abdollahzad H, Mostafai R. Antihyperlipidemic and antioxidative properties of pistacia atlantica subsp. kurdica in streptozotocin-induced diabetic mice. Diabetes Metab Syndr Obes. 2020;13:1231-1236. doi: 10.2147/DMSO.S250417. [PMID: 32368115]
  9. Minaiyan, M., Karimi, F., Ghannadi, A. Anti-inflammatory effect of Pistacia atlantica subsp. kurdica volatile oil and gum on acetic acid-induced acute colitis in rat. RJP. 2015;2(2):1-12.
  10. Roozegar MA, Azizi Jalilian F, Havasian MR, Panahi J, Pakzad I. Antimicrobial effect of Pistacia atlantica leaf extract. Bioinformation. 2016;12(1):19-21. doi: 10.6026/97320 630012019. [PMID: 27212840]
  11. Amiri M, Kazerouni F, Namaki S, Darbandi Tamijani H, Rahimipour H, et al. Cytotoxic effects of the ethanol bane skin extract in human prostate cancer pc3 cells. Int J Cancer Manag. 2016;9(2):e4755. doi: 10.17795/ijcp-4755. [PMID: 27482333]
  12. Balan KV, Prince J, Han Z, Dimas K, Cladaras M, Wyche JH, Sitaras NM, Pantazis P. Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. chia. Phytomedicine. 2007;14(4):263-72. doi: 10.1016/j.phymed.2006.03.009 [PMID: 16713222]
  13. Ahmadirad H, Mahmoodi M, Rahmatian F, Bakhshi M, Hajizadeh M, Mirzaei M, Ahmadinia H, Rezaei M, Dini A, Falahati-Pour SK. The hydroalcoholic extract of baneh leaves (pistacia atlantica) induces apoptosis in the breast cancer cells. World J Cancer Res. 2020;7:e1458.doi: 10.32113/wcrj_20201_1458.
  14. Shakarami Z, Ghaleh HE, Motlagh BM, Sheikhian A, Kondori BJ. Evaluation of the protective and therapeutic effects of Pistacia atlantica gum aqueous extract on cellular and pathological aspects of experimental asthma in Balb/c mice. Avicenna J Phytomed. 2019;9(3):248. [PMID: 31143692].
  15. Jabbari N, Zarei L, Esmaeili Govarchin Galeh H, Mansori Motlagh B. Assessment of synergistic effect of combining hyperthermia with irradiation and calcium carbonate nanoparticles on proliferation of human breast adenocarcinoma cell line (MCF-7 cells). Artif Cells Nanomed Biotechnol. 2018;46(sup2):364-72. doi: 10.1080/21691401.2018.1457537 [PMID: 29616844]
  16. Ghaleh HE, Gandabeh ZS, Motlagh BM, Sheikhian A. Pistacia atlantica gum aqueous extract modulates humoral and cellular immune responses in BALB/c mice. Turk J Vet Anim Sci. 2020;44(1):89-95. doi:10.3906/vet-1908-6.
  17. Zhang, X., Zeng, Q., Cai, W. et al. Trends of cervical cancer at global, regional, and national level: data from the Global Burden of Disease study 2019. BMC Public Health. 2021;12(1):894.  doi: 10.1186/s12889-021-10907-5 [PMID: 33975583]
  18. Cragg GM, Pezzuto JM. Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Med Princ Pract. 2016;25(Suppl. 2):41-59. doi: 10.1159/000443404 [PMID: 26679767]
  19. Sobral M.V., Xavier A.L., Lima T.C., de Sousa D.P. antitumor activity of monoterpenes found in essential oils. Sci World J. 2014;2014:953451. doi: 10.1155/2014/953451. [PMID: 25401162]
  20. Ye L, Zhang X, Xu Q, Cai Y, Gao W, Chen W. Anti-tumor activities and mechanism study of α-pinene derivative in vivo and in vitro. Cancer Chemother Pharm. 2020;85:367–377. doi: 10.1007/s00280-019-03997-x. [PMID: 31797046]
  21. Chen W., Liu Y., Li M., Mao J., Zhang L., Huang R., Jin X., Ye L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J Pharm Sci. 2015;127:332–338. doi: 10.1016/j.jphs.2015.01.008. [PMID: 25837931]
  22. Zhao Y, Chen R, Wang Y, Yang Y. α-Pinene inhibits human prostate cancer growth in a mouse xenograft model. Chemotherapy. 2018;63:1-7. doi: 10.1159/000479863.
  23. Jaafari-Ashkvandi Z, Shirazi SY, Rezaeifard S, Hamedi A, Erfani N. Cytotoxic effects of Pistacia atlantica (Baneh) fruit extract on human KB cancer cell line. Acta Medica. 2019;62(1):30-4. doi: 10.14712/18059694.2019.43 [PMID: 30931894]
  24. Pasban-Aliabadi H, Sobhani V, Esmaeili-Mahani S, Najafipour H, Askari A, Jalalian H. Effects of baneh (pistacia atlantica) gum on human breast cancer cell line (mcf-7) and its interaction with anticancer drug doxorubicin. Iran J Pharm Res. 2019;18(4):1959-1966. doi: 10.22037/ijpr.2019.1100853. [PMID: 32184861]
  25. Jan R, Chaudhry GE. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. Adv Pharm Bull. 2019;9(2):205-218. doi: 10.15171/apb.2019.024. [PMID: 31380246]
  26. Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5(6):a008672. doi: 10.1101/cshperspect. a008672. [PMID: 23732469]
  27. Jayathilake AG, Kadife E, Luwor RB, Nurgali K, Su XQ. Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutr Metab. 2019;16(1):53.  doi: 10.1186/s12986-019-0382-3 [PMID: 31428181]
  28. Kominami K, Nakabayashi J, Nagai T, Tsujimura Y, Chiba K, Kimura H, Miyawaki A, Sawasaki T, Yokota H, Manabe N, Sakamaki K. The molecular mechanism of apoptosis upon caspase-8 activation: quantitative experimental validation of a mathematical model. Biochim Biophys Acta. 2012;1823(10): 1825-40. doi: 10.1016/j.bbamcr.2012.07.003. [PMID: 22801217]
  29. Amiri M, Nasrollahi F, Barghi S, Ebrahimi N, Rajizadeh A, et al. The effect of ethanol baneh skin extract on the expressions of bcl - 2, bax, and caspase - 3 concentration in human prostate cancer pc3 cells. Int J Cancer Manag. 2018;11(3):e9865. doi: 10.5812/ijcm.9865.
  30. Rezaei PF, Fouladdel S, Cristofanon S, Ghaffari S, Amin G and Azizi E. Comparative cellular and molecular analysis of cytotoxicity and apoptosis induction by doxorubicin and Baneh in human breast cancer T47D cells. Cytotechnology. 2011;63:503-12. doi: 10.1007/s10616-011-9373-6 [PMID: 21818667]
  31. Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-dos-Santos Â. A cell’s fate: an overview of the molecular biology and genetics of apoptosis.Int J Mol Sci. 2019 ;20(17):4133. doi: 10.3390/ijms20174133 [PMID: 31450613]
  32. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules. 2019;9(11):735. doi: 10.3390/biom9110735. [PMID: 31766246].
  33. Shaheen F, Aziz MH, Fatima M, et al. In vitro cytotoxicity and morphological assessments of GO-ZnO against the MCF-7 cells: determination of singlet oxygen by chemical trapping. Nanomaterials (Basel). 2018;8(7):539. doi: 10.3390/nano8070539 [PMID: 30021935