Document Type : Research articles

Authors

1 Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

2 Department of Veterinary Sciences, Urmia University, Urmia, Iran

3 Ayatollah Taleghani Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Department of Biology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran

5 Internal Medicine Department, Shahrekord University of Medical Sciences, Shahrekord , Iran

Abstract

Background: Lead, as the most important toxic heavy element, has several devastating effects on human health and influences most biochemical and physiological functions. It is widely accepted that lead can adversely affect the cardiovascular system since it can be quickly absorbed and recycled in the blood strain.
Objectives: This survey scrutinized the effects of N-acetylcysteine (NAC) on the oxidative damage, inflammation, and expression of protein kinase C-alpha (PKC-?) and ankyrin repeat domain 1 (ANKRD1) genes in the heart tissue of rats exposed to lead (Pb).
Methods: The rats were incidentally divided into five groups, including four study groups for the investigation of the effects of the single and continuous doses of lead were examined with and without NAC and a control group (G1). The levels of malondialdehyde (MDA), total antioxidant capacity (TAC), interleukin (IL)-10, and tumor necrosis factor alpha (TNF-?) were analyzed. A reverse transcription polymerase chain reaction was applied to investigate the expression of PKC-? and ANKRD1 genes.
Results: Continuous exposure to Pb significantly decreased serum levels of TAC and IL-10; however, it increased MDA and TNF-? contents (P<0.001). The continuous dose of Pb also dramatically increased the expression of PKC-? and ANKRD1 genes in the cardiac tissue by 4.27-fold and 3.07-fold, respectively (P<0.001). N-acetylcysteine treatments not only improved morphological changes, oxidative stress, and inflammatory biomarkers but also compensated antioxidant capacity and the expression of PKC-? and ANKRD1 genes in cardiac tissues.
Conclusion: Lead exposure is remarkably related to cardiotoxicity mainly by inducing oxidative stress, inflammation, and antioxidant discharge. N-acetylcysteine ameliorates Pb-induced cardiotoxicity by improving the antioxidants capacity, mitigating oxidative stress, and down expressing PKC-? and ANKRD1 genes.

Keywords

  1. Vaziri ND, Gonick HC. Cardiovascular effects of lead exposure. The Indian Journal Of Medical Research. 2008;128(4):426-35. PMID: 19106438
  2. Poręba R, Gać P, Poręba M, Andrzejak R. Environmental and occupational exposure to lead as a potential risk factor for cardiovascular disease. Environmental Toxicology And Pharmacology. 2011;31(2):267-77. DOI: 10.1016/j.etap.2010.12.002
  3. Hanke W, Szeszenia-Dabrowska N. The role of long-term exposure to lead in the pathogenesis of hypertension--review of epidemiologic studies. Medycyna Pracy. 1994;45(2):163-70. PMID: 8007826
  4. da Silva RF, Borges Cdos S, Villela ESP, Missassi G, Kiguti LR, Pupo AS, et al. The Coadministration of N-Acetylcysteine Ameliorates the Effects of Arsenic Trioxide on the Male Mouse Genital System. Oxidative Medicine And Cellular Longevity. 2016;2016:4257498. PMCID: PMC4709715 DOI: 10.1155/2016/4257498
  5. Hou S, Yuan L, Jin P, Ding B, Qin N, Li L, et al. A clinical study of the effects of lead poisoning on the intelligence and neurobehavioral abilities of children. Theor Biol Med Model. 2013;13:10-17. PMCID: PMC3598508 DOI: 10.1186/1742-4682-10-13
  6. AG. V. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J Med Sci. 2009;2:27–36. https://www.cabdirect.org/cabdirect/abstract/20103114254
  7. Grant LD. Environmental Toxicants. John Wiley & Sons. Lead And Compounds. 2016;1:757–809. https://doi.org/10.1002/9781119438922.ch17
  8. Navas-Acien A, Guallar E, Silbergeld EK. Rothenberg SJ Environ Health Perspect. 2007;115(3):472-82. PMCID: PMC1849948 DOI: 10.1289/ehp.9785
  9. Flora SJS, Pachauri V, Saxena G. Academic Press. Arsenic, cadmium and lead. Reproductive and Developmental Toxicology. 2011;1:415–438. DOI: http://dx.doi.org/10.1016/B978-0-12-804239-7.00031-7
  10. Ari E, Kaya Y, Demir H, Asicioglu E, Keskin S. The correlation of serum trace elements and heavy metals with carotid artery atherosclerosis in maintenance hemodialysis patients. Biological Trace Element Research. 2011;144(1-3):351-9. DOI: 10.1007/s12011-011-9103-0
  11. Chlebda E, Antonowicz-Juchniewicz J, Andrzejak R. The effect of occupational exposure to heavy metals and arsenic on serum concentrations of carotenoids in copper foundry workers. Medycyna Pracy. 2004;55(5):389-401. PMID: 15768892
  12. Kuliczkowski W, Jołda-Mydłowska B, Kobusiak-Prokopowicz M, Antonowicz-Juchniewicz J, Kosmala W. Effect of heavy metal ions on function of vascular endothelium in patients with ischemic heart disease. Polskie Archiwum Medycyny Wewnetrznej. 2004;111(6):679-85. PMID: 15508790
  13. Beigi Harchegani A, Dahan H, Tahmasbpour E, Bakhtiari Kaboutaraki H, Shahriary A. Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Human fertility. Cambridge, England. 2020;23(1):5-16. DOI: 10.1080/14647273.2018.1494390
  14. Flora G, Gupta D, Tiwari A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58. PMCID: PMC3485653 DOI: 10.2478/v10102-012-0009-2
  15. Mirnamniha M, Faroughi F, Tahmasbpour E, Ebrahimi P, AB. H. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. Reviews On Environmental Health. 2019;34:339-48. DOI: 10.1515/reveh-2019-0008
  16. Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, et al. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. Journal of the American College of Cardiology. 2009;54(4):325-33. PMCID: PMC2915893 DOI: 10.1016/j.jacc.2009.02.076
  17. Mikhailov AT, Torrado M. The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. The International Journal Of Developmental Biology. 2008;52(7):811-21. DOI: 10.1387/ijdb.082655am
  18. Steinberg SF. Structural basis of protein kinase C isoform function. Physiological Reviews. 2008;88(4):1341-78. PMCID: PMC5635086 DOI: 10.1007/s10741-017-9634-3
  19. Palaniyandi SS, Sun L, Ferreira JC, Mochly-Rosen D. Protein kinase C in heart failure: a therapeutic target? Cardiovascular Research. 2009;82(2):229-39.
  20. Singh RM, Cummings E, Pantos C, Singh J. Protein kinase C and cardiac dysfunction: a review. Heart Failure Reviews. 2017;22(6):843-59.
  21. Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radical Biology & Medicine. 2000;28(9):1349-61. DOI: 10.1016/s0891-5849(00)00221-5
  22. Pudari H, et al. Evaluation of protective effect of N-acetyl cysteine on arsenic-induced hepatotoxicity. Nat Sci Biol Med. 2013;4:393–5. PMCID: PMC3783787 DOI: 10.4103/0976-9668.116986
  23. Dekhuijzen PN, et al. Antioxidant properties of N‐acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. European Respiratory Journal. 2004;23:629-36. DOI: 10.1183/09031936.04.00016804
  24. Molh AKS, Ting LC, Khan J, Al-Jashamy K, Jaafar H, Islam MN. Histopathological studies of cardiac lesions after an acute high dose administration of methamphetamine. The Malaysian Journal Of Medical Sciences. 2008;15(1):23-31. PMID: 22589611
  25. Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Scientific Reports. 2017;7:44819. PMCID: PMC5353673 DOI: 10.1038/srep44819
  26. Benzie IF. Lipid peroxidation: a review of causes, consequences, measurement and dietary influences. International Journal Of Food Sciences And Nutrition. 1996;47(3):233-61. DOI: 10.3109/09637489609012586
  27. Faco. T. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22. DOI: 10.1016/0003-2697(69)90064-5
  28. Hwang KY, Lee BK, Bressler JP, Bolla KI, Stewart WF, Schwartz BS. Protein kinase C activity and the relations between blood lead and neurobehavioral function in lead workers. Environmental Health Perspectives. 2002;110(2):133-8. PMCID: PMC1240726 DOI: 10.1289/ehp.02110133
  29. Hosseinzadeh Colagar A, Pouramir M, Tahmasbpour Marzony E, Jorsaraei SGA. Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Brazilian Archives of Biology and Technology. 2009;52:1387-92. https://doi.org/10.1590/S1516-89132009000600010
  30. Hosseinzadeh Colagar A, M Pouramir, Tahmasbpour E. Seminal plasma total antioxidants capacity of the infertile smoker and nonsmoker men. Shahid Chamran University Journal Of Science. 2008;19:124-31. https://www.sid.ir/en/journal/ViewPaper.aspx?id=142504
  31. Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutrition Research. 2009;29(2):82-88. DOI: 10.1016/j.nutres.2008.11.007
  32. Long GJ, Rosen JF, Schanne FA. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. The Journal Of Biological Chemistry. 1994;269(2):834-7. DOI: https://doi.org/10.1016/S0021-9258(17)42188-0
  33. Hegde S, Maysky M, Zaidi A. A Rare Case of Lead-Induced Cardiomyopathy. JACC Case Reports. 2020;2(10):1496-500. PMCID: PMC8302118 DOI: 10.1016/j.jaccas.2020.05.047
  34. Read JL, Williams JP. Lead myocarditis: report of a case. American Heart Journal. 1952;44(5):797-802. DOI: 10.1016/0002-8703(52)90107-5
  35. R. F. Reversible Myocarditis Due to Chronic Lead Poisoning in Childhood. Arch Dis Child. 1965;40:389–93. PMCID: PMC2019279 DOI: 10.1136/adc.40.212.389
  36. Kasperczyk S, Przywara-Chowaniec B, Kasperczyk A, Rykaczewska-Czerwińska M, Wodniecki J, Birkner E, et al. Function of heart muscle in people chronically exposed to lead. Annals Of Agricultural And Environmental Medicine. 2005;12(2):207-10. PMID: 16457475
  37. Elgawish RAR, Abdelrazek HMA. Effects of lead acetate on testicular function and caspase-3 expression with respect to the protective effect of cinnamon in albino rats. Toxicol Rep. 2014;1:795-801. PMCID: PMC5598148 DOI: 10.1016/j.toxrep.2014.10.010
  38. Offor SJ, Mbagwu HO, Orisakwe OE. Improvement of Lead Acetate-Induced Testicular Injury and Sperm Quality Deterioration by Solanum Anomalum Thonn. Ex. Schumach Fruit Extracts in Albino Rats. J Family Reprod Health. 2019;13(2):98-108.
    https://doi.org/10.18502/jfrh.v13i2.1916
  39. Kumar R, Reddy AG, Anjaneyulu Y, Reddy GD. Oxidative Stress Induced by Lead and Antioxidant Potential of Certain Adaptogens in Poultry. Toxicol Int. 2010;17:45–8. PMCID: PMC2997453 DOI: 10.4103/0971-6580.72668
  40. Shraideh Z, Badran Z, Hunaiti A, Battah A. Association between occupational lead exposure and plasma levels of selected oxidative stress related parameters in Jordanian automobile workers. Int J Occup Med Environ Health. 2018;31(4):517–525. DOI: 10.13075/ijomeh.1896.01243
  41. Li-Hui Xu, Fang-Fang Mu, Jian-Hong Zhao, Qiang He, Cui-Li Cao, Hui Yang. Lead Induces Apoptosis and Histone Hyperacetylation in Rat Cardiovascular Tissues. PLoS ONE. 2015;10:e0129091. PMCID: PMC4468051 DOI: 10.1371/journal.pone.0129091
  42. Wang J, Li M, Zhang W, Gu A, Dong J, Li J, et al. Protective Effect of N-Acetylcysteine against Oxidative Stress Induced by Zearalenone via Mitochondrial Apoptosis Pathway in SIEC02 Cells. Toxins (Basel). 2018;10:407-411. PMCID: PMC6215273 DOI: 10.3390/toxins10100407
  43. Shieh P, Jan CR, Liang WZ. The protective effects of the antioxidant N-acetylcysteine (NAC) against oxidative stress-associated apoptosis evoked by the organophosphorus insecticide malathion in normal human astrocytes. Toxicology. 2019;417:1-14. DOI: 10.1016/j.tox.2019.02.004
  44. Chen S, Ren Q, Zhang J, Ye Y, Zhang Z, Xu Y, et al. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain. Neuropathol Appl Neurobiol. 2014;40:759-77. MCID: PMC4043941 DOI: 10.1111/nan.12103