Document Type : Research articles

Authors

1 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 1.Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran 2.Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran

4 Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background: Ovarian cancer is the fifth leading cause of cancer-related deaths among women globally. Cancer stem cells (CSCs) are a subpopulation of tumor cells involved in ovarian tumor formation, metastasis, relapse, and chemoresistance. Moreover, the Notch signaling pathway has a pivotal role in CSCs maintenance. This study was designed to isolate CSCs from the A2780 cell line and determine the effectiveness of Mastermind-like transcriptional coactivator 1 (MAML1) inhibition, a key factor of the Notch pathway, in targeted therapy against ovarian CSCs.
Methods: The CD44+ or CD133+ CSCs were isolated from the ovarian A2780 cell line using magnetic cell sorting. The isolated CSCs were also evaluated for stemness markers expression, self-renewal capacity, cell cycle progression, and chemoresistance compared to their negative counterparts. Afterward, MAML1-shRNA was used to inhibit the Notch pathway in CD44+CSCs. The role of MAML1 was also evaluated in the CD44+ CSCs epithelial-mesenchymal transition (EMT) process and migration.
Results: In addition to the high expression of stemness markers, such as Sox2 and Musashi1, ovarian CD44+ or CD133+ CSCs had a high ability for sphere formation, higher percentage in the G1 phase to S phase, and decreased sensitivity to chemotherapy drug compared to CD44- or CD133- cells. Besides, silencing MAML1 significantly reduced the levels of EMT markers and cell migration in CD44+ CSCs, compared to scramble.
Conclusions: Mastermind-like transcriptional coactivator 1 can be considered a pivotal factor in the targeted therapy and eradication of CD44+ CSCs through the inhibition of the Notch signaling pathway in an ovarian cancer patient with a special focus on the ovarian A2780 cell line.

Keywords

  1. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609-15. Doi: 10.1038/nature10166. [pubmed: 21720365].
  2. Torre LA, Trabert B, desantis CE, Miller KD, Samimi G, Runowicz CD,et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018:68(4):284-296. Doi: 10.3322/caac.21456. [PubMed: 29809280].
  3. Berns EMJJ, Bowtell DD. The changing view of high-grade serous ovarian cancer. Cancer Res. 2012;72(11):2701-4. doi: 10.1158/0008-5472.CAN-11-3911. [PubMed: 22593197].
  4. Moghbeli M, Moghbeli F, Forghanifard MM, Abbaszadegan MR. Cancer stem cell detection and isolation. Med Oncol. 2014;31(9):69. doi: 10.1007/s12032-014-0069-6. [PubMed: 25064729].
  5. Wang QE. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J Biol Chem.2015;6(3):57-64. doi: 10.4331/wjbc.v6.i3.57. [PubMed: 26322164].
  6. Rahman M, Jamil HM, Akhtar N, Rahman KMT, Islam R, Asaduzzaman SM. Stem cell and cancer stem cell: a tale of two cells. Progress in Stem Cell. 2016;3(2):97-108. doi: 10.15419/psc.v3i02.124.
  7. Wang L, Zuo X, Xie K,Wei D. The role of CD44 and cancer stem cells, cancer stem cells. Methods Mol Biol. 2018;1692:31-42. doi: 10.1007/978-1-4939-7401-6_3. [PubMed: 28986884].
  8. Bartakova A, Michalova K, Presl J, Vlasak P, Kostun J, Bouda J. CD44 as a cancer stem cell marker and its prognostic value in patients with ovarian carcinoma. J Obstet Gynaecol. 2018;38(1):110-114. doi: 10.1080/01443615.2017.1336753. [PubMed: 28816557].
  9. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG,et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;12(15):5002-5012. doi: 10.1182/blood.V90.12.5002.
  10. Keyvani V, Farshchian M, Esmaeili SA, Yari H, Moghbeli M,Kazemi Nezhad SR,et al. Ovarian cancer stem cells and targeted therapy. J Ovarian Res. 2019;12:1-11. doi: 10.1186/s13048-019-0588-z.
  11. Glumac PM, LeBeau AM.The role of CD133 in cancer: a concise review. Clin Transl Med.2018;7(1):18. doi: 10.1186/s40169-018-0198-1. [PubMed: 29984391].
  12. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A,et al. Expression of CD133-1 and CD133-2 in ovarian cancer. IntJGynecolCancer. 2008;18:506-514.
  13. Aghajani M, Mansoori B, Mohammadi A, Asadzadeh Z, Baradaran B. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation. J Cell Physiol. 2019;234(12):21642-21661. doi: 10.1002/jcp.28824. [PubMed: 31102292].
  14. Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis-Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005;435(7044):964-8. doi: 10.1038/nature03589. [PubMed: 15959516].
  15. Taniguchi Y, Karlström H, Lundkvist J, Mizutani T, Otaka A, Vestling M,et al. Notch receptor cleavage depends on but is not directly executed by presenilins.Proc Natl Acad Sci USA. 2002;99(6):4014-19. doi: 10.1073/pnas.052017699.
  16. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors.Mol Cell Biol. 2002;22(21):7688-700. doi: 10.1128/MCB.22.21.7688-7700.2002. [PubMed: 12370315].
  17. Palomero T,. Lim WK, Odom DT,. Sulis ML, Real PJ, Margolin A,et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc NatAcad Sci U S A. 2006;103(48):18261-6. doi: 10.1073/pnas.0606108103. [PubMed: 17114293].
  18. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol.2008;182(2):315-325. doi: 10.1083/jcb.200710067. [PubMed: 18663143].
  19. Lo U, Lee CF, Lee MS, Hsieh JT. The role and mechanism of epithelial-to-mesenchymal transition in prostate cancer progression. Int J Mol Sci. 2017;18(10):2079. doi: 10.3390/ijms18102079. [PubMed: 28973968].
  20. Ceppi P, Peter ME. MicroRNAs regulate both epithelial-to-mesenchymal transition and cancer stem cells. Oncogene. 2014;33:269-78. doi: 10.1038/onc.2013.55.
  21. Farshbaf M, Lindberg MJ, Truong A, Bevens Z, Chambers E, Pournara A, et al. Mastermind-like 1 is ubiquitinated: functional consequences for notch signaling, Plos One. 2015;10(7):e0134013 doi: 10.1371/journal.pone.0134013. [PubMed: 26225565].
  22. Ottevanger PB.Ovarian cancer stem cells more questions than answers. Semin Cancer Biol. 2017;44:67-71.doi: 10.1016/j.semcancer.2017.04.009. [PubMed: 28450177].
  23. Naora H, Montell DJ. Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer.2005;5(5):355-66. doi: 10.1038/nrc1611. [PubMed: 15864277].
  24. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. J Clin Invest.2010;120(1):41-50. doi: 10.1172/JC141004. [PubMed: 20051635].
  25. Haygood CLW, Arend RC, Straughn JM, Buchsbaum DJ.Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival?.World J Stem Cells. 2014;6(4):441-7. doi: 10.4252/wjsc.v6.i4.441. [PubMed: 25258665].
  26. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM,et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors.Cancer Res. 2008;68(11):4311-20. doi: 10.1158/0008-5472.CAN-08-0364.[PubMed: 18519691].
  27. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM,et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells, 2009;27(12):2875-83. doi: 10.1002/stem.236. [PubMed: 19816957].
  28. Foster R, Buckanovich RJ, Rueda BR.Ovarian cancer stem cells: working towards the root of stemness. Cancer Lett. 2013;338:147-157. doi: 10.1016/j.canlet.2012.10.023.
  29. Garson k, Vanderhyden BC. Epithelial ovarian cancer stem cells: underlying complexity of a simple paradigm. Reproduction. 2015;149(2):59-70. doi: 10.1530/REP-14-0234. [PubMed: 25301968]
  30. Shah V, Taratula O, Garbuzenko OB, Taratula OR, Rodriguez-Rodriguez L, Minko T. Targeted nanomedicine for suppression of CD44 and simultaneous cell death induction in ovarian cancer: an optimal delivery of siRNA and anticancer drug,. Clin Cancer Res. 2013;19(22):6193-204. doi: 10.1158/1078-0432.CCR-13-1536. [PubMed: 24036854].
  31. Cao L, Shao M, Schilder J, Guise T, Mohammad K, Matei D.Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene. 2012;31(20):2521-34. doi: 10.1038/onc.2011.429. [PubMed: 21963846].
  32. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 2009;8(1):158-66. doi: 10.4161/cc.8.1.7533. [PubMed: 19158483].
  33. Alvero AB, Fu HH, Holmberg J, Visintin I, Mor L, Marquina CC, et al. Stem‐like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells. 2009;27(10) 2405-13. doi: 10.1002/stem.191. [PubMed: 19658191].
  34. Wei X, Dombkowski D, Meirelles K, Pieretti -Vanmarcke R, Szotek PP, Chang HL, et al. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proc Nat Acad Sci U S A. 2010;107(44):18874-79. doi: 10.1073/pnas.1012667107. [PubMed: 20952655].
  35. Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, et al. Rocconi, CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival.Clin Exp Metastasis. 2012;29(8):939-48. doi: 10.1007/s10585-012-9482-4. [PubMed: 22610780].
  36. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A,. Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704-15. doi: 10.1016/j.cell.2008.03.027. [PubMed: 18485877].
  37. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104(3):973-78. doi: 10.1073/pnas.0610117104. [PubMed: 17210912]
  38. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104(24)10158-63. doi: 10.1073/pnas.0703478104. [PubMed: 17548814].
  39. Reim F, Dombrowski Y, Ritter C, Buttmann M, Häusler S, et al.Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058-66. doi: 10.1158/0008-5472.CAN-09-0834. [PubMed: 19826050].
  40. Zheng X, Shen G, Yang X, Liu W.Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res.2007;67(8): 3691-97. doi: 10.1158/0008-5472.CAN-06-3912. [PubMed: 17440081].
  41. Lee SJ, Ghosh SC, Han HD, Stone RL, Bottsford-Miller J, Auzenne EJ, et al. Metronomic activity of CD44-targeted hyaluronic acid-paclitaxel in ovarian carcinoma.Clin Cancer Res. 2012;18(15):4114-21. doi: 10.1158/1078-0432.CCR-11-3250. [PubMed: 22693353].
  42. Skubitz AP, Taras EP, Boylan KLM, Waldron NN, Oh S, Panoskaltsis-Mortari A,et al. CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol. 2013;130(3): 579-87. doi: 10.1016/j.ygyno.2013.05.027. [PubMed: 23721800].
  43. 43. Cioffi M, Alterio CD, Camerlingo R, Tirino V, Consales C, Riccio A, et al. Identification of a distinct population of CD133+ CXCR4+ cancer stem cells in ovarian cancer. Sci Rep. 2015;5:10337. doi: 10.1038/srep10357. [PubMed: 26020117].
  44. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28: 209-18. doi: 10.1038/onc.2008.374.
  45. Mi Y, Huang Y, Deng J. The enhanced delivery of salinomycin to CD133+ ovarian cancer stem cells through CD133 antibody conjugation with poly (lactic-co-glycolic acid)-poly (ethylene glycol) nanoparticles. Oncol Lett. 2018;15(5):6611-21. doi: 10.3892/ol.2018.8140. [PubMed: 29725407].
  46. Zahran AM, Rayan A, Fakhry H, Attia AM, Ashmawy AM, Soliman A, et al. Pretreatment detection of circulating and tissue CD133+ CD44+ cancer stem cells as a prognostic factor affecting the outcomes in Egyptian patients with colorectal cancer. Cancer Manag Res. 2019;11:1237-48. doi: 10.2147/CMAR.S189653. [PubMed: 30799951].
  47. Almanaa TN, Geusz ME, Jamasbi RJ. A new method for identifying stem-like cells in esophageal cancer cell lines. J Cancer. 2013;4(7):536-48. doi: 10.7150/jca.6477. [PubMed: 23983818].
  48. Ruan Z, Liu J, Kuang Y. Isolation and characterization of side population cells from the human ovarian cancer cell line SK-OV-3. Exp Ther Med. 2015:10(6): 2071-78. doi: 10.3892/etm.2015.2836. [PubMed: 26668597].
  49. Koury J, Zhong L, Hao J. Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017;2017: 2925869. doi: 10.1155/2017/2925869. [PubMed: 28356914]
  50. 50. Moghbeli M, Mozaffari HM, Memar B, Forghanifard MM, Gholamin M, Abbaszadegan MR. Role of MAML1 in targeted therapy against the esophageal cancer stem cells. J Transl Med. 2019;17(1): 126. doi: 10.1186/s12967-019-1876-5. [PubMed: 30992079].
  51. Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, et al. Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol. 2012;19(3):743-49. doi: 10.1245/s10434-011-2074-8. [PubMed: 22006371].
  52. Razavi SMS, Forghanifard MM, Kordi-Tamandani DM, Abbaszadegan MR. MAML1 regulates EMT markers expression through NOTCH-independent pathway in breast cancer cell line MCF7. Biochem Biophys Res Commun. 2019;510: 376-82. doi: 10.1016/j.bbrc.2019.01.101. [PubMed: 30732857]
  53. Kotiyal S, Bhattacharya SJB.Breast cancer stem cells, EMT and therapeutic targets. Biochem Biophys Res Commun. 2014;453(10):112-16. doi: 10.1016/j.bbrc.2014.09.069. [PubMed: 25261721].
  54. Shimono Y, Mukohyama J, Nakamura SI, Minami H. MicroRNA regulation of human breast cancer stem cells. J Clin Med. 2015;5(1):2. doi: 10.3390/jcm5010002. [PubMed: 26712794].