Document Type : Review articles

Authors

1 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

3 Department of Medical Microbiology, Sabzevar University of Medical Science, Sabzevar, Iran

4 Department of Pediatrics, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran

Abstract

Cancer has always been a severe threat to health and life. Since patients with advanced cancer often have a limited survival time and high treatment expenditures, routine therapies, such as surgery, radiation, and chemotherapy may help them live longer. However, the majority of these individuals cannot afford the excessive cost of care and have short life duration. With the introduction of oncolytic bacteria and viruses, a revolutionary therapeutic technique for the treatment and potential cure of malignant tumors has emerged. Clostridium, Bifidobacteria, Salmonella typhimurium, Listeria monocytogenes, and Bacillus are all oncolytic bacteria. Adenoviruses, Vaccinia viruses, Reoviruses, Herpesviruses, and Coxsackieviruses are all oncolytic viruses. This study aimed to review the current studies on the therapeutic potential of oncolytic bacteria and viruses as an alternate method for cancer prevention and therapy, including both experimental and clinical trials.

Keywords

  1. Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52-79. doi: 10.1016/j.ejpb.2015.03.018. [PubMed: 25813885].
  2. Lotfi H, Aryan E, Sankian M, Meshkat Z, Khalifeh Soltani A. A case of multidrug-resistant Mycobacterium simiae in an elderly woman. Respirology Case Reports. 2021; 9(3): e00715. Doi: 10.1002/rcr2.715.
  3. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642-62. doi: 10.1038/nrd4663. [PubMed: 26323545].
  4. Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, Garcia A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett. 2019;366(12):1-26. doi: 10.1093/femsle/fnz136. [PubMed: 31226708].
  5. Maroun J, Muñoz-Alia M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol. 2017;12(4):193-213. doi: 10.2217/fvl-2016-0129. [PubMed: 29387140].
  6. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651-9. doi: 10.1038/sj.mt.6300108. [PubMed: 17299401].
  7. Kucerova P, Cervinkova M. Spontaneous regression of tumour and the role of microbial infection–possibilities for cancer treatment. AntiCancer Drugs. 2016;27(4):269-77. doi: 10.1097/CAD.0000000000000337. [PubMed: 26813865].
  8. Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015;6:1-11. doi: 10.3389/fphar.2015.00272. [PubMed: 26617524].
  9. Komor U, Bielecki P, Loessner H, Rohde M, Wolf K, Westphal K, et al. Biofilm formation by Pseudomonas aeruginosa in solid murine tumors–a novel model system. Microbes Infect. 2012;14(11):951-8. doi: 10.1016/j.micinf.2012.04.002. [PubMed: 22542841].
  10. Jia LJ, Xu HM, Ma DY, Hu QG, Huang XF, Jiang WH, et al. Enhanced therapeutic effect by combination of tumor-targeting Salmonella and endostatin in murine melanoma model. Cancer Biol Ther. 2005;4(8):840-5. doi: 10.4161/cbt.4.8.1891. [PubMed: 16210914].
  11. Phan TX, Nguyen VH, Duong MTQ, Hong Y, Choy HE, Min JJ. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria‐mediated cancer therapy. Microbiol Immunol. 2015;59(11):664-75. doi: 10.1111/1348-0421.12333. [PubMed: 26500022].
  12. Stern C, Kasnitz N, Kocijancic D, Trittel S, Riese P, Guzman CA, et al. Induction of CD 4+ and CD 8+ anti‐tumor effector T cell responses by bacteria mediated tumor therapy. Int J Cancer. 2015;137(8):2019-28. doi: 10.1002/ijc.29567. [PubMed: 25868911].
  13. Leschner S, Westphal K, Dietrich N, Viegas N, Jablonska J, Lyszkiewicz M, et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. Plos One. 2009;4(8):1-11. doi: 10.1371/journal.pone.0006692. [PubMed: 19693266].
  14. Winslow CE, Broadhurst J, Buchanan RE, Krumwiede C, Rogers LA, Smith GH. The families and genera of the bacteria: preliminary report of the committee of the society of american bacteriologists on characterization and classification of bacterial types. J Bacteriol. 1917;2(5):505-66. doi: 10.1128/jb.2.5.505-566.1917. [PubMed: 16558764].
  15. Connell HC. The study and treatment of cancer by proteolytic enzymes: preliminary report. Can Med Assoc J. 1935;33(4):364-70. [PubMed: 20320024].
  16. Malmgren RA, Flanigan CC. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 1955;15(7):473-8. [PubMed: 13240693].
  17. Bahl H, Dürre P. Clostridia: biotechnology & medical applications. New Jersey: John Wiley & Sons; 2001.
  18. Van Mellaert L, Barbe S, Anne J. Clostridium spores as anti-tumour agents. Trends Microbiol. 2006;14(4):190-6. doi: 10.1016/j.tim.2006.02.002. [PubMed: 16500103].
  19. Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang-Gillam A, et al. Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27(1):96-106. doi: 10.1158/1078-0432.CCR-20-2065.
  20. Dang LH, Bettegowda C, Agrawal N, Cheong I, Huso D, Frost P, et al. Targeting vascular and avascular compartments of tumors with C. novyi-NT and anti-microtubule agents.
  21. Cancer Biol Ther. 2004;3(3):326-37. doi: 10.4161/cbt.3.3.704. [PubMed: 14739784].
  22. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10(10):737-44. doi: 10.1038/sj.cgt.7700634. [PubMed: 14502226].
  23. Tu DG, Chang WW, Lin ST, Kuo CY, Tsao YT, Lee CH. Salmonella inhibits tumor angiogenesis by downregulation of vascular endothelial growth factor. Oncotarget. 2016;7(25):37513-25. doi: 10.18632/oncotarget.7038. [PubMed: 27175584].
  24. Kuan YD, Lee CH. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression. Oncotarget. 2016;7(1):374-85. doi: 10.18632/oncotarget.6258. [PubMed: 26517244].
  25. Yang CJ, Chang WW, Lin ST, Chen MC, Lee CH. Salmonella overcomes drug resistance in tumor through P-glycoprotein downregulation. Int J Med Sci. 2018;15(6):574-9. doi: 10.7150/ijms.23285. [PubMed: 29725247].
  26. Tsao YT, Kuo CY, Cheng SP, Lee CH. Downregulations of AKT/mTOR signaling pathway for Salmonella-mediated suppression of matrix metalloproteinases-9 expression in mouse tumor models. Int J Mol Sci. 2018;19(6):1-10. doi: 10.3390/ijms19061630. [PubMed: 29857512].
  27. Liu F, Zhang L, Hoffman RM, Zhao M. Vessel destruction by tumor-targeting Salmonella typhimurium A1-R is enhanced by high tumor vascularity. Cell Cycle. 2010;9(22):4518-24. doi: 10.4161/cc.9.22.13744. [PubMed: 21135579].
  28. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142. doi: 10.1200/JCO.2002.20.1.142. [PubMed: 11773163].
  29. King I, Bermudes D, Lin S, Belcourt M, Pike J, Troy K, et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Human Gene Therapy. 2002;13(10):1225-33. doi: 10.1089/104303402320139005. [PubMed: 12133275].
  30. Low KB, Ittensohn M, Le T, Platt J, Sodi S, Amoss M, et al. Lipid A mutant Salmonella with suppressed virulence and TNF alpha induction retain tumor-targeting in vivo. Nat Biotechnol. 1999;17(1):37-41. doi: 10.1038/5205. [PubMed: 9920266].
  31. Zhao M, Yang M, Ma H, Li X, Tan X, Li S, et al. Targeted therapy with a Salmonella typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res. 2006;66(15):7647-52. doi: 10.1158/0008-5472.CAN-06-0716.
  32. Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar Typhimurium. Infect Immun. 2011;79(10):4227-39. doi: 10.1128/IAI.05398-11. [PubMed: 21768282].
  33. Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991;55(3):476-511. doi: 10.1128/mr.55.3.476-511.1991. [PubMed: 1943998].
  34. Flickinger JC, Rodeck U, Snook AE. Listeria monocytogenes as a vector for cancer immunotherapy: current understanding and progress. Vaccines. 2018;6(3):1-19. doi: 10.3390/vaccines6030048. [PubMed: 30044426].
  35. Seavey MM, Maciag PC, Al-Rawi N, Sewell D, Paterson Y. An anti-vascular endothelial growth factor receptor 2/fetal liver kinase-1 Listeria monocytogenes anti-angiogenesis cancer vaccine for the treatment of primary and metastatic Her-2/neu+ breast tumors in a mouse model. J Immunol. 2009;182(9):5537-46. doi: 10.4049/jimmunol.0803742. [PubMed: 19380802].
  36. Wood LM, Pan ZK, Guirnalda P, Tsai P, Seavey M, Paterson Y. Targeting tumor vasculature with novel Listeria-based vaccines directed against CD105. Cancer Immunol Immunother. 2011;60(7):931-42. doi: 10.1007/s00262-011-1002-x. [PubMed: 21431419].
  37. Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E, et al. Nontoxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(21):8668-73. doi: 10.1073/pnas.1211287110. [PubMed: 23610422].
  38. Singh R, Wallecha A. Cancer immunotherapy using recombinant Listeria monocytogenes: transition from bench to clinic. Hum Vaccin. 2011;7(5):497-505. doi: 10.4161/hv.7.5.15132.
  39. Seavey MM, Paterson Y. Antiangiogenesis immunotherapy induces epitope spreading to HER-2/neu resulting in breast tumor immunoediting. Breast Cancer. 2009;1:19. doi: 10.2147/bctt.s6689. [PubMed: 24367160].
  40. Maciag PC, Seavey MM, Pan Z-K, Ferrone S, Paterson Y. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res. 2008;68(19):8066-75. doi: 10.1158/0008-5472.CAN-08-0287. [PubMed: 18829565].
  41. Duarte C, Gudiña EJ, Lima CF, Rodrigues LR. Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express. 2014;4(1):1-12. doi: 10.1186/s13568-014-0040-0.
  42. Bedada TL, Feto TK, Awoke KS, Garedew AD, Yifat FT, Birri DJ. Probiotics for cancer alternative prevention and treatment. Biomed Pharmacother. 2020;129:1-10. doi: 10.1016/j.biopha.2020.110409. [PubMed: 32563987].
  43. Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers. 2020;13(1):1-22. doi: 10.3390/cancers13010020. [PubMed: 33374549].
  44. Hoffman RM, Yano S. Salmonella typhimurium A1-R and Cell-Cycle Decoy Therapy of Cancer. Methods Mol Biol. 2016;1409:165-75. doi: 10.1007/978-1-4939-3515-4_14. [PubMed: 26846810].
  45. Olino K, Wada S, Edil BH, Pan X, Meckel K, Weber W, et al. Tumor-associated antigen expressing Listeria monocytogenes induces effective primary and memory T-cell responses against hepatic colorectal cancer metastases. Ann Surg
  46. Oncol. 2012;19(3):597-607. doi: 10.1245/s10434-011-2037-0. [PubMed: 21979110].
  47. Cheng W, Feng YQ, Ren J, Jing D, Wang C. Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma. 2016;63(2):215-22. doi: 10.4149/206_150518N270. [PubMed: 26774143].
  48. Asadollahi P, Ghanavati R, Rohani M, Razavi S, Esghaei M,Talebi M. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. Plos One. 2020;15(5):1-18. doi: 10.1371/journal.pone.0232930. [PubMed: 32401801].
  49. Yao Q, Cao S, Li C, Mengesha A, Low P, Kong B, et al. Turn a diarrhoea toxin into a receptor-mediated therapy for a plethora of CLDN-4-overexpressing cancers. Turn a diarrhoea toxin into a receptor-mediated therapy for a plethora of CLDN-4-overexpressing cancers. Biochem Biophys Res Commun. 2010;398(3):413-9. doi: 10.1016/j.bbrc.2010.06.089. [PubMed: 20599713].
  50. Ganai S, Arenas RB, Forbes NS. Tumour-targeted delivery of TRAIL using Salmonella typhimurium enhances breast cancer survival in mice. Br J Cancer. 2009;101(10):1683-91. doi: 10.1038/sj.bjc.6605403.
  51. Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Salmonella typhimurium engineered to produce CCL21 inhibit tumor growth. Cancer Immunol Immunother. 2009;58(5):769-75. doi: 10.1007/s00262-008-0555-9.
  52. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol. 2001;167(11):6471-9. doi: 10.4049/jimmunol.167.11.6471. [PubMed: 11714814].
  53. Lemmon MJ, van Zijl P, Fox M, Mauchline ML, Giaccia AJ, Minton NP, et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 1997;4(8):791-6. doi: 10.1038/sj.gt.3300468.
  54. Kim SH, Castro F, Gonzalez D, Maciag PC, Paterson Y, Gravekamp C. Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. Br J Cancer. 2008;99(5):741-9. doi: 10.1038/sj.bjc.6604526.
  55. Roberts NJ, Zhang L, Janku F, Collins A, Bai RY, Staedtke V, et al. Intratumoral injection of Clostridium novyi-NT spores induces antitumor responses. Sci Transl Med. 2014;6(249):1-27. doi: 10.1126/scitranslmed.3008982. [PubMed: 25122639].
  56. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009;27(30):3975-83. doi: 10.1016/j.vaccine.2009.04.041. [PubMed: 19389451].
  57. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325-33. doi: 10.1200/JCO.2014.57.4244.
  58. de Matos AL, Franco LS, McFadden G. Oncolytic viruses and the immune system: the dynamic duo. Mol Ther Methods Clin Dev. 2020;17:349-58. doi: 10.1016/j.omtm.2020.01.001. [PubMed: 32071927].
  59. Bejarano MT, Merchan JR. Targeting tumor vasculature through oncolytic virotherapy: recent advances. Oncolytic Virother. 2015;4:169-81. doi: 10.2147/OV.S66045. [PubMed: 27512680].
  60. Pikor LA, Bell JC, Diallo JS. Oncolytic viruses: exploiting cancer's deal with the devil. Trends Cancer. 2015;1(4):266-77. doi: 10.1016/j.trecan.2015.10.004. [PubMed: 28741515].
  61. Rezaei R, Ghaleh HEG, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, et al. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther. 2022;29(6):647-60. doi: 10.1038/s41417-021-00359-9. [PubMed: 34158626].
  62. Alvanegh AG, Ganji SM, Tavallaie M, Rafati A, Arpanaei A, Dorostkar R, et al. Comparison of oncolytic virotherapy and nanotherapy as two new miRNA delivery approaches in
  63. lung cancer. Biomed Pharmacother. 2021;140:1-10. doi: 10.1016/j.biopha.2021.111755.
  64. Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: A review of approaches and mechanisms. Cancers. 2018;10(4):1-19. doi: 10.3390/cancers10040124. [PubMed: 29671772].
  65. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy? Oncoimmunology. 2019;8(6):1-7. doi: 10.1080/2162402X.2019.1596006. [PubMed: 31069150].
  66. Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, et al. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol. 2019;234(6):8636-46. doi: 10.1002/jcp.27850. [PubMed: 30515798].
  67. Terrivel M, Gromicho C, Matos AM. Oncolytic viruses: what to expect from their use in cancer treatment. Microbiol Immunol. 2020;64(7):477-92. doi: 10.1111/1348-0421.12753. [PubMed: 31663631].
  68. Liu T-C, Hallden G, Wang Y, Brooks G, Francis J, Lemoine N, et al. An E1B-19 kDa gene deletion mutant adenovirus demonstrates tumor necrosis factor-enhanced cancer selectivity and enhanced oncolytic potency. Mol Ther. 2004;9(6):786-803. doi: 10.1016/j.ymthe.2004.03.017. [PubMed: 15194046].
  69. Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res. 2006;12(1):305-13. doi: 10.1158/1078-0432.CCR-05-1059. [PubMed: 16397056].
  70. Oh E, Hong J, Kwon OJ, Yun CO. A hypoxia-and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci Rep. 2018;8(1):1-13. doi: 10.1038/s41598-018-19300-6. [PubMed: 29362367].
  71. Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic adenovirus—a nova for gene-targeted oncolytic viral therapy in HCC. Front Oncol. 2019;9:1-14. doi: 10.3389/fonc.2019.01182. [PubMed: 31781493].
  72. Niemann J, Kühnel F. Oncolytic viruses: adenoviruses. Virus Genes. 2017;53(5):700-6. doi: 10.1007/s11262-017-1488-1. [PubMed: 28702840].
  73. Panek WK, Kane JR, Young JS, Rashidi A, Kim JW, Kanojia D, et al. Hitting the nail on the head: combining oncolytic adenovirus-mediated virotherapy and immunomodulation for the treatment of glioma. Oncotarget. 2017;8(51):89391. doi: 10.18632/oncotarget.20810. [PubMed: 29179527].
  74. Yu B, Dong J, Wang C, Zhan Y, Zhang H, Wu J, et al. Characteristics of neutralizing antibodies to adenovirus capsid proteins in
  75. human and animal sera. Virology. 2013;437(2):118-23. doi: 10.1016/j.virol.2012.12.014. [PubMed: 23351390].
  76. Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther. 2014;25(4):285-300. doi: 10.1089/hum.2013.228. [PubMed: 24499174].
  77. Lopez-Gordo E, Denby L, Nicklin SA, Baker AH. The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery. Expert Opin Drug Deliv. 2014;11(11):1795-813. doi: 10.1517/17425247.2014.938637. [PubMed: 25036189].
  78. Short JJ, Rivera AA, Wu H, Walter MR, Yamamoto M, Mathis JM, et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther. 2010;9(9):2536-44. doi: 10.1158/1535-7163.MCT-10-0332. [PubMed: 20736345].
  79. Gouvarchin Ghaleha HE, Bolandian M, Dorostkar R, Jafari A, Pour MF. Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother. 2020;128:1-11. doi: 10.1016/j.biopha.2020.110276.
  80. Aoyama K, Kuroda S, Morihiro T, Kanaya N, Kubota T, Kakiuchi Y, et al. Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Sci Rep. 2017;7(1):1-10. doi: 10.1038/s41598-017-14717-x. [PubMed: 29074882].
  81. Farrera-Sal M, Moya-Borrego L, Bazan-Peregrino M, Alemany R. Evolving status of clinical immunotherapy with oncolytic adenovirus. Clin Cancer Res. 2021;27(11):2979-88. doi: 10.1158/1078-0432.CCR-20-1565. [PubMed: 33526422].
  82. Packiam VT, Lamm DL, Barocas DA, Trainer A, Fand B, Davis RL, et al. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non–muscle-invasive bladder cancer: interim results. Urol Oncol. 2018;36(10):440-7. doi: 10.1016/j.urolonc.2017.07.005. [PubMed: 28755959].
  83. Lang FF, Conrad C, Gomez-Manzano C, Yung WA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):1419-27. doi: 10.1200/JCO.2017.75.8219. [PubMed: 29432077].
  84. Duffy MR, Fisher KD, Seymour LW. Making oncolytic virotherapy a clinical reality: the European contribution. Hum Gene Ther. 2017;28(11):1033-46. doi: 10.1089/hum.2017.112. [PubMed: 28793793].
  85. Fu X, Tao L, Zhang X. An oncolytic virus derived from type 2 herpes simplex virus has potent therapeutic effect against metastatic ovarian cancer. Cancer Gene Ther. 2007;14(5):480-7. doi: 10.1038/sj.cgt.7701033. [PubMed: 17290283].
  86. Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 2018;19(1):1-11. doi: 10.1186/s12865-018-0281-9. [PubMed: 30563466].
  87. Yun CO. Overcoming the extracellular matrix barrier to improve intratumoral spread and therapeutic potential of oncolytic virotherapy. Curr Opin Mol Ther. 2008;10(4):356-61. [PubMed: 18683100].
  88. Fukuhara H, Todo T. Oncolytic herpes simplex virus type 1 and host immune responses. Curr Cancer Drug Targets. 2007;7(2):149-55. doi: 10.2174/156800907780058907. [PubMed: 17346106].
  89. Mondal M, Guo J, He P, Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 2020;16(10):
  90. -402. doi: 10.1080/21645515.2020.1723363. [PubMed: 32078405].
  91. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses—interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017;7:1-15. doi: 10.3389/fonc.2017.00195. [PubMed: 28944214].
  92. Guse K, Cerullo V, Hemminki A. Oncolytic vaccinia virus for the treatment of cancer. Expert Opin Biol Ther. 2011;11(5):
  93. -608. doi: 10.1517/14712598.2011.558838. [PubMed: 21338330].
  94. Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019;7(1):1-21. doi: 10.1186/s40425-018-0495-7.
  95. Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749-58. doi: 10.1038/mt.2011.276. [PubMed: 22186794].
  96. Mejias-Perez E, Carreño-Fuentes L, Esteban M. Development of a safe and effective vaccinia virus oncolytic vector WR-Δ4 with a set of gene deletions on several viral pathways. Mol Ther Oncolytics. 2018;8:27-40. doi: 10.1016/j.omto.2017.12.002. [PubMed: 29367944].
  97. Shin J, Hong SO, Kim M, Lee H, Choi H, Kim J, et al. Generation of a novel oncolytic vaccinia virus using the IHD-W strain. Hum Gene Ther. 2021;32(9-10):517-27. doi: 10.1089/hum.2020.050. [PubMed: 32854548].
  98. Mansfield DC, Kyula JN, Rosenfelder N, Chao-Chu J, Kramer-Marek G, Khan AA, et al. Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther. 2016;23(4):357-68. doi: 10.1038/gt.2016.5. [PubMed: 26814609].
  99. Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, et al. Oncolytic virus therapy for cancer. Oncolytic Virother. 2013;2:31-46. doi: 10.2147/OV.S38901. [PubMed: 27512656].
  100. Aurelian L. Oncolytic virotherapy: the questions and the promise. Oncolytic Virother. 2013;2:19-29. doi: 10.2147/OV.S39609. [PubMed: 27512655].
  101. Deng L, Fan J, Guo M, Huang B. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian
  102. Tan strain Guang9. Cancer Lett. 2016;372(2):251-7. doi: 10.1016/j.canlet.2016.01.025. [PubMed: 26803055].
  103. Potts KG, Irwin CR, Favis NA, Pink DB, Vincent KM, Lewis JD, et al. Deletion of F4L (ribonucleotide reductase) in vaccinia virus produces a selective oncolytic virus and promotes anti‐tumor immunity with superior safety in bladder cancer models. EMBO Mol Med. 2017;9(5):638-54. doi: 10.15252/emmm.201607296. [PubMed: 28289079].
  104. Yoo SY, Jeong SN, Kang DH, Heo J. Evolutionary cancer-favoring engineered vaccinia virus for metastatic hepatocellular carcinoma. Oncotarget. 2017;8(42):71489-99. doi: 10.18632/oncotarget.17288. [PubMed: 29069721].
  105. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329-36. doi: 10.1038/nm.3089. [PubMed: 23396206].
  106. Mell LK, Brumund KT, Daniels GA, Advani SJ, Zakeri K, Wright ME, et al. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin Cancer Res. 2017;23(19):5696-702. doi: 10.1158/1078-0432.CCR-16-3232. [PubMed: 28679776].
  107. Müller L, Berkeley R, Barr T, Ilett E, Errington-Mais F. Past, Present and Future of Oncolytic Reovirus. Cancers. 2020;12(11):1-26. doi: 10.3390/cancers12113219. [PubMed: 33142841].
  108. Clements D, Helson E, Gujar SA, Lee PW. Reovirus in cancer therapy: an evidence-based review. Oncolytic Virother. 2014;3:69-82. doi: 10.2147/OV.S51321. [PubMed: 27512664].
  109. Carew JS, Espitia CM, Zhao W, Mita MM, Mita AC, Nawrocki ST. Oncolytic reovirus inhibits angiogenesis through induction of CXCL10/IP-10 and abrogation of HIF activity in soft
  110. tissue sarcomas. Oncotarget. 2017;8(49):86769-83. doi: 10.18632/oncotarget.21423. [PubMed: 29156834].
  111. Sahin E, Egger ME, McMasters KM, Zhou HS. Development of oncolytic reovirus for cancer therapy. J Cancer Ther. 2013;4(6): 1100-15. doi: 10.4236/jct.2013.46127.
  112. Seyed-Khorrami SM, Soleimanjahi H, Soudi S, Habibian A. MSCs loaded with oncolytic reovirus: migration and in vivo virus delivery potential for evaluating anti-cancer effect in tumor-bearing C57BL/6 mice. Cancer Cell Int. 2021;21(1):1-19. doi: 10.1186/s12935-021-01848-5. [PubMed: 33933086].
  113. Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus–Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic Virother. 2020;9:1-15. doi: 10.2147/OV.S186337. [PubMed: 32185149].
  114. Berkeley RA, Steele LP, Mulder AA, van den Wollenberg DJ, Kottke TJ, Thompson J, et al. Antibody-neutralized reovirus is effective in oncolytic virotherapy. Cancer Immunol Res. 2018;6(10):1161-73. doi: 10.1158/2326-6066.CIR-18-0309. [PubMed: 30209061].
  115. Garofalo M, Villa A, Rizzi N, Kuryk L, Mazzaferro V, Ciana P. Systemic administration and targeted delivery of immunogenic oncolytic adenovirus encapsulated in extracellular vesicles
  116. for cancer therapies. Viruses. 2018;10(10):1-9. doi: 10.3390/v10100558. [PubMed: 30322158].
  117. Fountzilas C, Patel S, Mahalingam D. Oncolytic virotherapy, updates and future directions. Oncotarget. 2017;8(60):102617-39. doi: 10.18632/oncotarget.18309. [PubMed: 29254276].
  118. Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol. 2005;26(6):1471-6. doi: 10.3892/ijo.26.6.1471. [PubMed: 15870858].
  119. Ahmadi A; Ghaleh H, Dorostkar R, Farzanehpour M, Bolandian M. Oncolytic Coxsackievirus and the Mechanisms of its Effects on Cancer: A Narrative Review. Curr Cancer Ther Rev. 2021;17(3):1-7. doi: 10.2174/1573394716999201228215537.
  120. Miyamoto S, Inoue H, Nakamura T, Yamada M, Sakamoto C, Urata Y, et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012;72(10):2609-21. doi: 10.1158/0008-5472.CAN-11-3185. [PubMed: 22461509].
  121. Liu H, Xue YC, Deng H, Mohamud Y, Ng CS, Chu A, et al. MicroRNA modification of Coxsackievirus B3 decreases its toxicity, while retaining oncolytic potency against lung
  122. cancer. Mol Ther Oncolytics. 2020;16:207-18. doi: 10.1016/j.omto.2020.01.002. [PubMed: 32123721].
  123. Miyamoto S, Sagara M, Kohara H, Tani K. Oncolytic coxsackievirus therapy as an immunostimulator. Rinsho Ketsueki. 2017;58(8):977-82. doi: 10.11406/rinketsu.58.977. [PubMed: 28883283].
  124. Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21
  125. in oncology. Oncolytic Virother. 2014;3:47-55. doi: 10.2147/OV.S56322. [PubMed: 27512662].
  126. Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, et al. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res. 2019;25(19):5818-31. doi: 10.1158/1078-0432.CCR-18-4022. [PubMed: 31273010].
  127. Wang B, Ogata H, Takishima Y, Miyamoto S, Inoue H, Kuroda M, et al. A novel combination therapy for human oxaliplatin-resistant colorectal cancer using oxaliplatin and coxsackievirus A11. Anticancer Res. 2018;38(11):6121-6. doi: 10.21873/anticanres.12963. [PubMed: 30396927].
  128. Thirukkumaran C, Shi ZQ, Thirukkumaran P, Luider J, Kopciuk K, Spurrell J, et al. PUMA and NF-kB are cell signaling predictors of reovirus oncolysis of breast cancer. Plos One. 2017;12(1):1-21. doi: 10.1371/journal.pone.0168233.
  129. Ding Y, Fan J, Deng L, Peng Y, Zhou B, Huang B. Evaluation of tumor specificity and immunity of thymidine kinase-deleted vaccinia Virus Guang9 Strain. Onco Targets Ther. 2020;13:7683-97. doi: 10.2147/OTT.S260288. [PubMed: 32801778].
  130. Gholami S, Chen CH, Gao S, Lou E, Fujisawa S, Carson J, et al. Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther. 2014;21(7):283-9. doi: 10.1038/cgt.2014.28.
  131. Zhou YA, Zhang T, Zhao JB, Wang XP, Jiang T, Gu ZP, et al. The adenovirus-mediated transfer of PTEN inhibits the growth of esophageal cancer cells in vitro and in vivo. Biosci Biotechnol Biochem. 2010;74(4):736-40. doi: 10.1271/bbb.90787.
  132. Benencia F, Courrèges MC, Fraser NW, Coukos G. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation. Cancer Biol Ther. 2008;7(8):1194-205. doi: 10.4161/cbt.7.8.6216. [PubMed: 18458533].
  133. Hassan F, Lossie SL, Kasik EP, Channon AM, Ni S, Kennedy MA. A mouse model study of toxicity and biodistribution of a replication defective adenovirus serotype 5 virus with its genome engineered to contain a decoy hyper binding site to sequester and suppress oncogenic HMGA1 as a new cancer treatment therapy. Plos One. 2018;13(2):1-13. doi: 10.1371/journal.pone.0192882. [PubMed: 29462157].
  134. Müller LM, Holmes M, Michael JL, Scott GB, West EJ, Scott KJ, et al. Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21. J Immunother Cancer. 2019;7(1):1-16. doi: 10.1186/s40425-019-0632-y. [PubMed: 31262361].
  135. Parakrama R, Fogel E, Chandy C, Augustine T, Coffey M, Tesfa L, et al. Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC Cancer. 2020;20(1):1-11. doi: 10.1186/s12885-020-07038-2. [PubMed: 32552875].
  136. Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, et al. Phase 1b trial of biweekly intravenous Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus in
  137. colorectal cancer. Mol Ther. 2015;23(9):1532-40. doi: 10.1038/mt.2015.109. [PubMed: 26073886].
  138. Streby KA, Geller JI, Currier MA, Warren PS, Racadio JM, Towbin AJ, et al. Intratumoral injection of HSV1716, an oncolytic herpes virus, is safe and shows evidence of immune response and viral replication in young cancer patients. Clin Cancer Res. 2017;23(14):3566-74. doi: 10.1158/1078-0432.CCR-16-2900. [PubMed: 28495911].