Document Type : Research articles

Authors

1 Xinjiang Clinical College, Anhui Medical University, Xinjiang 830001, China

2 Department of Dermatology and Venereology, People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang 830001, China

Abstract

Background: Melanoma is an aggressive tumor caused by melanocytes characterized by a poor prognosis at the stage of metastasis. Therefore, it is crucial to identify biomarkers for progression and prognosis for the treatment of melanoma.Objectives: The study aimed to identify the specific genes related to the prognosis of melanoma utilizing bioinformatics analyses.Methods: Differentially expressed genes (DEGs) between melanoma tissues and normal tissues were screened from the GSE 3,189 gene expression profile of Gene Expression Omnibus (GEO). A co-expression network was constructed by weighted correlation network analysis (WGCNA). Functional enrichment analysis for DEGs was performed. The risk prognostic model and nomogram predictive model were established utilizing the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis.Results: Using the differential expression analysis and WGCNA, 1,408 DEGs were screened between melanoma tissues and normal tissues. Functional enrichment analysis proved that these genes primarily participated in the cell cycle and mitotic phase regulation in cancer. In addition, 17 optimal DEGs were identified for constructing the risk score prognostic model. Cox regression analysis further revealed that ectonucleotide pyrophosphatase/phosphodiesterase 4 (ENPP4) and FGR proto-oncogene, Src family tyrosine kinase (FGR) were the key genes significantly associated with survival. A nomogram prediction model was established for individual survival probability by integrating pathological T/N/M stage, age, ENPP4, and FGR. High FGR or ENPP4 expression indicated a better prognosis in melanoma patients.Conclusion: This study identified FGR and ENPP4 as potentially useful prognostic biomarkers for melanoma. The corresponding risk score prognostic model and nomogram may be a reliable tool for predicting the prognosis of melanoma patients.

Keywords

  1. Rastrelli M, Tropea S, Rossi CR, Alaibac M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. 2014;28(6):1005-11. [PubMed: 25398793].
  2. Darmawan CC, Jo G, Montenegro SE, Kwak Y, Cheol L, Cho KH, et al. Early detection of acral melanoma: A review of clinical, dermoscopic, histopathologic, and molecular characteristics. J Am Acad Dermatol. 2019;81(3):805-12. doi: 10.1016/j.jaad.
  3. 01.081. [PubMed: 30731177].
  4. Kudchadkar RR, Lowe MC, Khan MK, McBrien SM. Metastatic melanoma. CA Cancer J Clin. 2020 ;70(2):78-85. doi: 10.3322/
  5. caac.21599. [PubMed: 32101327].
  6. Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366-79. doi: 10.1080/15384047.2019.1640032. [PubMed: 31366280].
  7. Chattopadhyay C, Kim DW, Gombos DS, Oba J, Qin Y, Williams MD, et al. Uveal melanoma: From diagnosis to treatment and the science in between. Cancer. 2016;122(15):2299-312. doi: 10.1002/cncr.29727. [PubMed: 26991400].
  8. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413-35. doi: 10.1007/s13353-011-0057-x. [PubMed: 21698376].
  9. Ji F, Sadreyev RI. RNA-seq: Basic Bioinformatics Analysis. Curr Protoc Mol Biol. 2018;124(1):e68. doi: 10.1002/cpmb.68. [PubMed: 30222249].
  10. Tao Z, Shi A, Li R, Wang Y, Wang X, Zhao J. Microarray bioinformatics in cancer- a review. J BUON. 2017;22(4):838-43. [PubMed: 29155508].
  11. Zeng X, Shi G, He Q, Zhu P. Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis. Sci Rep. 2021;11(1):20799. doi: 10.1038/s41598-021-00268-9. [PubMed: 34675265].
  12. Hammad A, Elshaer M, Tang X. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning. Math Biosci Eng. 2021;18(6):8997-9015. doi: 10.3934/mbe.2021443. [PubMed: 34814332].
  13. Mao Y, Shen J, Lu Y, Lin K, Wang H, Li Y, et al. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget. 2017;8(26):42537-47. doi: 10.18632/oncotarget.16451. [PubMed: 28418924].
  14. Kim N, Gim JA, Lee BJ, Choi BI, Park SB, Yoon HS, et al. RNA-sequencing identification and validation of genes differentially expressed in high-risk adenoma, advanced colorectal cancer, and normal controls. Funct Integr Genomics. 2021;21(3-4):513-21. doi: 10.1007/s10142-021-00795-8. [PubMed: 34273035].
  15. Lei T, Qian H, Lei P, Hu Y. Ferroptosis-related gene signature associates with immunity and predicts prognosis accurately in patients with osteosarcoma. Cancer Sci. 2021;112(11):4785-98. doi: 10.1111/cas.15131. [PubMed: 34506683].
  16. Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, et al. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol Med. 2020;17(1):20-31. doi: 10.20892/j.issn.2095-3941.2019.0339. [PubMed: 32296574].
  17. Li M, Zhao J, Yang R, Cai R, Liu X, Xie J, et al. CENPF as an independent prognostic and metastasis biomarker corresponding to CD4+ memory T cells in cutaneous melanoma. Cancer Sci. 2022 ;113(4):1220-34. doi: 10.1111/cas.15303. [PubMed: 35189004].
  18. Luo C, Lim JH, Lee Y, Granter SR, Thomas A, Vazquez F, et al. A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature. 2016;537(7620):422-26. doi: 10.1038/
  19. nature19347. [PubMed: 27580028].
  20. Peng Q, Gao L, Cheng HB, Wang JS, Wang J. Sialidase NEU1 May Serve as a Potential Biomarker of Proliferation, Migration and Prognosis in Melanoma. World J Oncol. 2022;13(4):222-34. doi: 10.14740/wjon1509. [PubMed: 36128592].
  21. Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol. 2016;1418:93-110. doi: 10.1007/978-1-4939-3578-9_5. [PubMed: 27008011].
  22. Zhao J, Guo C, Ma Z, Liu H, Yang C, Li S. Identification of a novel gene expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on TCGA and GEO databases. Lung Cancer. 2020;149:90-96. doi: 10.1016/j.lungcan.2020.09.014. [PubMed: 33002836].
  23. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J, et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res. 2005;11(20):7234-42. doi: 10.1158/1078-0432.CCR-05-0683. [PubMed: 16243793].
  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi: 10.1093/nar/gkv007. [PubMed: 25605792].
  25. Tian Z, He W, Tang J, Liao X, Yang Q, Wu Y, et al. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets Ther. 2020;13:6805-17. doi: 10.2147/OTT.S258439. [PubMed: 32764968].
  26. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.
  27. 100141. [PubMed: 34557778].
  28. Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY, et al. NPM1 Is a Prognostic Biomarker Involved in Immune Infiltration of Lung Adenocarcinoma and Associated With m6A Modification and Glycolysis. Front Immunol. 2021;12:724741. doi: 10.3389/
  29. fimmu.2021.724741. [PubMed: 34335635].
  30. Barros AJ, Hirakata VN. Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodol. 2003;3:21. doi: 10.1186/1471-2288-3-21. [PubMed: 14567763].
  31. Tang G, Qi L, Sun Z, Liu J, Lv Z, Chen L, et al. Evaluation and analysis of incidence and risk factors of lower extremity venous thrombosis after urologic surgeries: A prospective two-center cohort study using LASSO-logistic regression. Int J Surg. 2021;89:105948. doi: 10.1016/j.ijsu.2021.105948. [PubMed: 33892158].
  32. Vickers AJ, Holland F. Decision curve analysis to evaluate the clinical benefit of prediction models. Spine J. 2021;21(10):1643-48. doi: 10.1016/j.spinee.2021.02.024. [PubMed: 33676020].
  33. Bobos M. Histopathologic classification and prognostic factors of melanoma: a 2021 update. Ital J Dermatol Venerol. 2021;156(3):300-21. doi: 10.23736/S2784-8671.21.06958-3. [PubMed: 33982546].
  34. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23(5):660-70. doi: 10.1038/s41590-022-01141-1. [PubMed: 35241833].
  35. Xu Y, Zhang P, Zhang K, Huang C. The application of CA72-4 in the diagnosis, prognosis, and treatment of gastric cancer. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188634. doi: 10.1016/j.bbcan.2021.188634. [PubMed: 34656687].
  36. Zhang JJ, Hong J, Ma YS, Shi Y, Zhang DD, Yang XL, et al. Identified GNGT1 and NMU as Combined Diagnosis Biomarker of Non-Small-Cell Lung Cancer Utilizing Bioinformatics and Logistic Regression. Dis Markers. 2021;2021:6696198. doi: 10.1155/2021/6696198. [PubMed: 33505535].
  37. Zhou L, Yu Y, Wen R, Zheng K, Jiang S, Zhu X, et al. Development and Validation of an 8-Gene Signature to Improve Survival Prediction of Colorectal Cancer. Front Oncol. 2022;12:863094. doi: 10.3389/fonc.2022.863094. [PubMed: 35619909].
  38. Lin Y, Zhang F, Jin Y, Zhong Q, Tan W, Liu J, et al. NUDT1 Could Be a Prognostic Biomarker and Correlated with Immune Infiltration in Clear Cell Renal Cell Carcinoma. Appl Bionics Biomech. 2022;2022:3669296. doi: 10.1155/2022/3669296. [PubMed: 36606241].
  39. Albright RA, Chang WC, Robert D, Ornstein DL, Cao W, Liu L, et al. NPP4 is a procoagulant enzyme on the surface of vascular endothelium. Blood. 2012;120(22):4432-40. doi: 10.1182/
  40. blood-2012-04-425215. [PubMed: 22995898].
  41. Albright RA, Ornstein DL, Cao W, Chang WC, Robert D, Tehan M, et al. Molecular basis of purinergic signal metabolism by ectonucleotide pyrophosphatase/phosphodiesterases 4 and 1 and implications in stroke. J Biol Chem. 2014;289(6):3294-306. doi: 10.1074/jbc.M113.505867. PubMed: 24338010].
  42. Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J, et al. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem. 2006;281(25):17492-500. doi: 10.1074/jbc.M601803200. [PubMed: 16627485].
  43. Chin CN, Dallas-Yang Q, Liu F, Ho T, Ellsworth K, Fischer P, et al. Evidence that inhibition of insulin receptor signaling activity by PC-1/ENPP1 is dependent on its enzyme activity. Eur J Pharmacol. 2009;606(1-3):17-24. doi: 10.1016/j.ejphar.
  44. 01.016. [PubMed: 19374858].
  45. Salisbury TB, Tomblin JK. Insulin/Insulin-like growth factors in cancer: new roles for the aryl hydrocarbon receptor, tumor resistance mechanisms, and new blocking strategies. Front Endocrinol (Lausanne). 2015;6:12. doi: 10.3389/fendo.
  46. 00012. [PubMed: 25699021].
  47. Wang J, Di J, Wang G. ENPP4 overexpression is associated with no recovery from Barrett's esophagus. Int J Clin Exp Pathol. 2020;13(12):2927-36. [PubMed: 33425094].
  48. Yao Y, Zhang T, Qi L, Liu R, Liu G, Wang X, et al. Competitive Endogenous RNA Network Construction and Comparison of Lung Squamous Cell Carcinoma in Smokers and Nonsmokers. Dis Markers. 2019;2019:5292787. doi: 10.1155/2019/
  49. [PubMed: 31885738].
  50. Gutkind JS, Robbins KC. Translocation of the FGR protein-tyrosine kinase as a consequence of neutrophil activation. Proc Natl Acad Sci USA. 1989;86(22):8783-7. doi: 10.1073/pnas.
  51. 22.8783. [PubMed: 2682659].
  52. Iriyama N, Yuan B, Hatta Y, Takagi N, Takei M. Lyn, a tyrosine kinase closely linked to the differentiation status of primary acute myeloid leukemia blasts, associates with negative regulation of all-trans retinoic acid (ATRA) and dihydroxyvitamin D3 (VD3)-induced HL-60 cells differentiation. Cancer Cell Int. 2016;16:37. doi: 10.1186/s12935-016-0314-5. [PubMed: 27182202].
  53. Acin-Perez R, Iborra S, Marti-Mateos Y, Cook ECL, Conde-Garrosa R, Petcherski A, et al. Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nat Metab. 2020;2(9):974-88. doi: 10.1038/s42255-020-00273-8. [PubMed: 32943786].
  54. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet. 2004;36(5):453-61. doi: 10.1038/ng
  55. [PubMed: 15098032].
  56. Sharp NA, Luscombe MJ, Clemens MJ. Regulation of c-fgr proto-oncogene expression in Burkitt's lymphoma cells: effect of interferon treatment and relationship to EBV status and c-myc mRNA levels. Oncogene. 1989;4(8):1043-6. [PubMed: 2548145].
  57. Hui AB, Lo KW, Yin XL, Poon WS, Ng HK. Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Invest. 2001;81(5):717-23. doi: 10.1038/labinvest.3780280. [PubMed: 11351043].
  58. Weir MC, Shu ST, Patel RK, Hellwig S, Chen L, Tan L, et al. Selective Inhibition of the Myeloid Src-Family Kinase Fgr Potently Suppresses AML Cell Growth in Vitro and in Vivo. ACS Chem Biol. 2018;13(6):1551-59. doi: 10.1021/acschembio.
  59. b00154. [PubMed: 29763550].
  60. Dos Santos C, McDonald T, Ho YW, Liu H, Lin A, Forman SJ, et al. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents. Blood. 2013;
  61. (11):1900-13. doi: 10.1182/blood-2012-11-466425. [PubMed: 23896410].
  62. Mukherjee A, Epperly MW, Shields D, Hou W, Fisher R, Hamade D, et al. Ionizing irradiation-induced Fgr in senescent cells mediates fibrosis. Cell Death Discov. 2021;7(1):349. doi: 10.1038/s41420-021-00741-4. [PubMed: 34772919].