Document Type : Research articles

Authors

1 Department of Neurosurgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311113, China

2 Department of Neurology, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311113, China

3 Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China

Abstract

Background: Hypertensive intracerebral hemorrhage (HICH) is a spontaneous cerebrovascular disease occuring in the brain parenchyma.Objectives: To characterize the predictive role of miR-155-5p and BDNF in the prognosis of HICH.Methods: All patients with HICH who underwent CT-guided minimally invasive surgery were classified into the good and poor prognosis groups using the modified Rankin Scale (mRS). The level of miR-155-5p was determined by qRT-PCR, and the level of brain-derived neurotrophic factor (BDNF) in serum was determined by ELISA. The relationship between miR-155-5p and BDNF was tested by Pearson correlation and luciferase reporter assay. The logistic regression method was used to determine the risk factors. The ROC curve was drawn to explain the predictive role of miR-155-5p, BDNF, or their combination.Results: A high level of miR-155-5p and a lower level of BDNF were observed in the poor prognosis group. BDNF level was negatively related to the level of miR-155-5p. BDNF is a target of miR-155-5p. BDNF and miR-155-5p were associated with prognosis. BDNF, miR-155-5p or their combination were predictive biomarkers for the prognosis of HICH.Conclusion: BDNF and miR-155-5p were associated with the outcome of HICH patients.

Keywords

  1. Duan T, Li L, Yu Y, Li T, Han R, Sun X, et al. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res. 2022;179:106200. doi: 10.1016/j. phrs.2022.106200 [PubMed: 35367344]
  2. Xu X, Zheng Y, Chen X, Li F, Zhang H, Ge X. Comparison of endoscopic evacuation, stereotactic aspiration and craniotomy for the treatment of supratentorial hypertensive intracerebral haemorrhage: study protocol for a randomised controlled trial. Trials. 2017;18(1):296. doi: 10.1186/s13063-017-2041-1. [PubMed: 28659171]
  3. Li J, Li Z, Zhao L, Wang Y, Yang J, Feng Y, et al. Optimizing The Timing of Stereotactic Minimally Invasive Drainage for Hypertensive Intracerebral Hemorrhage. Neurol Ther. 2023; 12(3):919-30. doi: 10.1007/s40120-023-00465-w [PubMed:37072672]
  4. Bowman KM, Ahmed AS. Surgical Indications and Options for Hypertensive Hemorrhages. Neurol Clin. 2022;40(2):337-53. doi: 10.1016/j.ncl.2021.12.001. [PubMed: 35465879]
  5. Ding W, Gu Z, Song D, Liu J, Zheng G, Tu C. Development and validation of the hypertensive intracerebral hemorrhage prognosis models. Medicine. 2018;97(39):e12446. doi: 10.1097/MD.0000000000012446. [PubMed: 30278523]
  6. Wang IK, Yen TH, Tsai CH, Sun Y, Chang WL, Chen PL, et al. Renal function is associated with one-month and one-year mortality in patients with intracerebral hemorrhage. PloS one. 2023;18(1):e0269096. doi: 10.1371/journal.pone.0269096. [PubMed: 36701340]
  7. Pan J, Chartrain AG, Scaggiante J, Spiotta AM, Tang Z, Wang W, et al. A Compendium of Modern Minimally Invasive Intracerebral Hemorrhage Evacuation Techniques. Oper Neurosurg (Hagerstown) .2020;18(6):710-20. doi: 10.1093/ ons/opz308. [PubMed: 31625580]
  8. Bai Y, Wang L, Sun L, Ye P, Hui R. Circulating microRNA-26a: potential predictors and therapeutic targets for non-hypertensive intracerebral hemorrhage. Med Hypotheses. 2011;77(4):488-90. doi: 10.1016/j.mehy.2011.06.017. [PubMed: 21764522]
  9. Wang Z, Lu G, Sze J, Liu Y, Lin S, Yao H, et al. Plasma miR-124 Is a Promising Candidate Biomarker for Human Intracerebral Hemorrhage Stroke. Mol Neurobiol. 2018;55(7):5879-88. doi: 10.1007/s12035-017-0808-8. [PubMed: 29101647]
  10. Gareev I, Yang G, Sun J, Beylerli O, Chen X, Zhang D, et al. Circulating MicroRNAs as Potential Noninvasive Biomarkers of Spontaneous Intracerebral Hemorrhage. World Neurosurg. 2020;133:e369-e75. doi: 10.1016/j.wneu.2019.09.016. [PubMed: 31525485]
  11. Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, et al. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. J Oncol. 2021;2021:3408937. doi: 10.1155/2021/ 3408937. [PubMed: 34721577]
  12. Lin TC, Tsai YC, Chen YA, Young TH, Wu CC, Chiang YH, et al. Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study. Front Cell Neurosci. 2023;17:1170251. doi: 10.3389/ fncel.2023.1170251. [PubMed: 37252187]
  13. Gao J, Liang Z, Zhao F, Liu X, Ma N. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Bioengineered. 2022;13(5):12275-88. doi: 10.1080/21655979.2022.2067293. [PubMed: 35603354]
  14. Lei K, Wei S, Liu X, Yuan X, Pei L, Xu Y, et al. Combination of Ultraearly Hematoma Growth and Hypodensities for Outcome Prediction after Intracerebral Hemorrhage. World Neurosurg . 2020;135:e610-e5. doi: 10.1016/j.wneu.2019.12.069. [PubMed: 31870816]
  15. Li CX, Li L, Zhang JF, Zhang QH, Jin XH, Cai GJ. Tripartite intensive intervention for prevention of rebleeding in elderly patients with hypertensive cerebral hemorrhage. World J Clin Cases. 2021;9(33):10106-15. doi: 10.12998/wjcc.v9.i33.10106. [PubMed: 34904080]
  16. Yu Z, Tao C, Xiao A, Wu C, Fu M, Dong W, et al. Chinese multidisciplinary guideline for management of hypertensive intracerebral hemorrhage. Chin Med J. 2022;135(19):2269-71. doi: 10.1097/CM9.0000000000001976. [PubMed: 36315009]
  17. Fu C, Wang N, Chen B, Wang P, Chen H, Liu W, et al. Surgical Management of Moderate Basal Ganglia Intracerebral Hemorrhage: Comparison of Safety and Efficacy of Endoscopic Surgery, Minimally Invasive Puncture and Drainage, and Craniotomy. World Neurosurg. 2019;122:e995-e1001. doi: 10.1016/j.wneu.2018.10.192. [PubMed: 30404051]
  18. Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol. 2022;13:1032343. doi: 10.3389/fneur.2022.1032343. [PubMed: 36408517]
  19. Gong Y, Zhang G, Li B, Cao C, Cao D, Li X, et al. BMAL1 attenuates intracerebral hemorrhage-induced secondary brain injury in rats by regulating the Nrf2 signaling pathway. Ann Transl Med. 2021;9(21):1617. doi: 10.21037/atm-21-1863. [PubMed: 34926661]
  20. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab J CEREB BLOOD F MET. 2010;30(1):92-101. doi: 10.1038/jcbfm.2009.186. [PubMed: 19724284]
  21. Zhang W, Wang L, Wang R, Duan Z, Wang H. A blockade of microRNA-155 signal pathway has a beneficial effect on neural injury after intracerebral haemorrhage via reduction in neuroinflammation and oxidative stress. Arch Physiol Biochem. 2022;128(5):1235-41. doi: 10.1080/13813455.2020.1764047. [PubMed: 32412861]
  22. Liang L, Li X, Dong H, Gong X, Wang G. A comparative study on the efficacy of robot of stereotactic assistant and frame-assisted stereotactic drilling, drainage for intracerebral hematoma in patients with hypertensive intracerebral hemorrhage. Pak J Med Sci. 2022;38(7):1796-801. doi: 10.12669/pjms.38.7.5481. [PubMed: 36246717]
  23. Li L, Wang X, Guo J, Chen Y, Wang Z. Effect of acupuncture in the acute phase of intracerebral hemorrhage on the prognosis and serum BDNF: a randomized controlled trial. Front Neurosci. 2023;17:1167620. doi: 10.3389/fnins.2023.1167 620. [PubMed: 37123377]
  24. Tang Y, Kline KT, Zhong XS, Xiao Y, Lian H, Peng J, et al. Chronic colitis upregulates microRNAs suppressing brain-derived neurotrophic factor in the adult heart. PloS one. 2021; 16(9):e0257280. doi: 10.1371/journal.pone.0257280. [PubMed: 34543287]
  25. Peng YY, Zhang HB, Wang X, Xiao Q, Guo SL. The biomarkers of key miRNAs and gene targets associated with extranodal NK/T-cell lymphoma. Open Med (Wars). 2022;17(1):124-34. doi: 10.1515/med-2021-0409. [PubMed: 35071774]
  26. Solich J, Kuśmider M, Faron-Gorecka A, Pabian P, Kolasa M, Zemła B, et al. Serum Level of miR-1 and miR-155 as Potential Biomarkers of Stress-Resilience of NET-KO and SWR/J Mice. Cells. 2020;9(4). doi: 10.3390/cells9040917. [PubMed: 32283635]
  27. Qi R, Liu H, Liu C, Xu Y, Liu C. Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp Ther Med. 2020;19(1):527-34. doi: 10.3892/etm.2019.8227. [PubMed: 31897098]
  28. Wang MD, Wang Y, Xia YP, Dai JW, Gao L, Wang SQ, et al. High Serum MiR-130a Levels Are Associated with Severe Perihematomal Edema and Predict Adverse Outcome in Acute ICH. Mol Neurobiol. 2016;53(2):1310-21. doi: 10.1007/s12 035-015-9099-0.
  29. Zhu Y, Sun L, Huang T, Jia Y, Yang P, Zhang Q, et al. High Serum Brain-Derived Neurotrophic Factor Is Associated With Decreased Risks of Poor Prognosis After Ischemic Stroke. Stroke. 2023;54(7):1789-97. doi: 10.1161/STROKEAHA.122. 042362. [PubMed: 37278235]