Document Type : Research articles


National Institute of Genetic Engineering and Biotechnology


A new worldwide pandemic of coronavirus disease 2019 (COVID-19) has resulted in a healthcare crisis with high mortality and morbidity. Presently, several drugs are under accelerated research without established efficacy and are being used to treat COVID-19 patients either as unapproved drug use or as clinical trials. To optimally use the drugs, several factors, such as the gene effects, drug interactions, and drug toxicity, should be considered. Genetic polymorphisms are a type of genetic diversity within a populations gene pool that constitute the basis of pharmacokinetics, which causes alteration in the drug function and response. Since there was a limited time to check individual pharmacogenomics markers, it seems population pharmacogenomics tests could be helpful in expecting drug treatment failure in COVID-19 patients. We genotyped and investigated allele frequencies of 33 SNPs located on 10 pharmacogenes from 150 healthy individual samples.
A total of 32 potential pharmacogenomics variants relevant to COVID-19 treatment were identified in the Iranian population. Considering them in patients' pharmacotherapy could influence the treatment optimization and reduce severity of adverse effects.


  1. Aceti A, Gianserra L, Lambiase L, Pennica A, Teti E. Pharmacogenetics as a tool to tailor antiretroviral therapy: a review. World J Virol. 2015;4(3):198-208. doi: 10.5501/wjv.v4.i3.198. [PubMed: 2627998].
  2. Phillips EJ, Mallal SA. Pharmacogenetics of drug hypersensitivity. Pharmacogenomics. 2010;11(7):973-87. doi: 10.2217/pgs.10.77. Erratum in: Pharmacogenomics. 2022;23(2):155. [PubMed: 20602616].
  3. Anderson PL, Kakuda TN, Lichtenstein KA. The cellular pharmacology of nucleoside-and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clin Infect Dis. 2004;38(5):743-53. doi: 10.1086/381678. [PubMed: 14986261].
  4. Anderson PL, Lamba J, Aquilante CL, Schuetz E, Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006;42(4):441-9. doi: 10.1097/01.qai.0000225013.53568.69. [PubMed: 16791115].
  5. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783-92. doi: 10.1007/s40262-013-0072-7. [PubMed: 23681967].
  6. Zhang Y-Z, Holmes EC. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell. 2020;181(2):223-7. doi: 10.1016/j.cell.2020.03.035. [PubMed: 32220310].
  7. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C> T affects mRNA stability. Pharmacogenet Genomics. 2005;15(10):693-704. [PubMed: 16141795].
  8. Luzum JA, Petry N, Taylor AK, Van Driest SL, Dunnenberger HM, Cavallari LH. Moving pharmacogenetics into practice: it’s all about the evidence! Clin Pharmacol Ther. 2021;110(3):649-61. doi: 10.1002/cpt.2327. [PubMed: 34101169].
  9. Fricke-Galindo I, Falfan-Valencia R. Pharmacogenetics approach for the improvement of COVID-19 treatment. Viruses. 2021;13(3):413. doi: 10.3390/v13030413. [PubMed: 33807592].
  10. Gemmati D, Tisato V. Genetic hypothesis and pharmacogenetics side of renin-angiotensin-system in COVID-19. Genes (Basel). 2020;11(9):1044. doi: 10.3390/genes11091044. [PubMed: 32899439].
  11. Takahashi T, Luzum JA, Nicol MR, Jacobson PA. Pharmacogenomics of COVID-19 therapies. NPJ Genom Med. 2020;5:35. doi: 10.1038/s41525-020-00143-y. [PubMed: 32864162].
  12. Yari H, Shabani S, Nafissi N, Majidzadeh T, Mahjoubi F. Investigation of promoter methylation patterns association with genes expression profile of ISL1, MGMT and DMNT3b in tissue of breast cancer patients. Mol Biol Rep. 2022;49(2):847-57. doi: 10.1007/s11033-021-06546-z. [PubMed: 34997427].
  13. Shabani S, Elahi E, Bahraniasl M, Babaheidarian P, Sadeghpour A, Majidzadeh T, et al. Multi-stage analysis of FOXM1, PYROXD1, hTERT, PPARA, PIM3, BMI1 and MCTP1 expression patterns in colorectal cancer. Gastroenterol Hepatol Bed Bench. 2022;15(2):120-30. [PubMed: 35845311].
  14. Mahjoubi F, Shabani S, Khakbazpour S, Khaligh Akhlaghi A. Novel EPG5 Mutation Associated with Vici Syndrome Gene. Case Rep Genet. 2022;2022:5452944. doi: 10.1155/2022/5452944. [PubMed: 35846893].
  15. Shabani S, Mahjoubi F, Mahjoubi B, Mirzaee R. Investigation of hTERT Expression Level and its Relation with Clinicopathological Features and Resistance to Chemotherapy in Colorectal Cancer Patients. Journal of Molecular Biomarkers & Diagnosis. 2014;5(3):1. doi:
  16. Pan X, Chen D, Xia Y, Wu X, Li T, Ou X, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20(4):410-1. doi: 10.1016/S1473-3099(20)30114-6. [PubMed: 32087116].
  17. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924. [PubMed: 32081636].
  18. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. doi: 10.1007/s12098-020-03263-6. [PubMed: 32166607].
  19. Azarpira N, Ashraf MJ, Khademi B, Darai M, Hakimzadeh A, Abedi E. Study the polymorphism of CYP3A5 and CYP3A4 loci in Iranian population with laryngeal squamous cell carcinoma. Mol Biol Rep. 2011;38(8):5443-8. doi: 10.1007/s11033-011-0699-0. [PubMed: 21380731].
  20. Salles PF. Variabilidade Do CYP2D6 em cinco municipios endêmicos de malaria por Plasmodium vivax na Amazônia brasileira. 2020.
  21. Petrović J, Pešić V, Lauschke VM. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. European journal of human genetics. 2020;28(1):88-94.
  22. Stanković B, Kotur N, Gašić V, Klaassen K, Ristivojević B, Stojiljković M, et al. Pharmacogenomics landscape of COVID-19 therapy response in Serbian population and comparison with worldwide populations. J Med Biochem. 2020;39(4):488-99. doi: 10.5937/jomb0-26725. [PubMed: 33312066].
  23. Takahashi T, Luzum J, Nicol M, Jacobson P. Pharmacogenomics of COVID-19 therapies. NPJ Genom Med. 2020;5:35. doi: 10.1038/s41525-020-00143-y. [PubMed: 32864162].
  24. Badary OA. Pharmacogenomics and COVID-19: clinical implications of human genome interactions with repurposed drugs. Pharmacogenomics J. 2021;21(3):275-84. doi: 10.1038/s41397-021-00209-9. [PubMed: 33542445].
  25. Deb S, Arrighi S. Potential effects of COVID-19 on cytochrome P450-mediated drug metabolism and disposition in infected patients. Eur J Drug Metab Pharmacokinet. 2021;46(2):185-203. doi: 10.1007/s13318-020-00668-8. [PubMed: 33538960].
  26. Babayeva M, Loewy Z. Repurposing drugs for COVID-19: Pharmacokinetics and pharmacogenomics of chloroquine and hydroxychloroquine. Pharmgenomics Pers Med. 2020;13:531-42. doi: 10.2147/PGPM.S275964. [PubMed: 33122936].
  27. Sortica VA, Lindenau JD, Cunha MG, Ohnishi MD, Ventura AMR, Ribeiro-dos-Santos ÂK, et al. The effect of SNPs in CYP450 in chloroquine/primaquine Plasmodium vivax malaria treatment. Pharmacogenomics. 2016;17(17):1903-11. doi: 10.2217/pgs-2016-0131. [PubMed: 27767381].