Ability of Laboratory Findings upon Admission to Predict Lung Involvement and Its Severity in COVID-19 Patients Requiring Hospitalization
HTML
pdf

Keywords

COVID-19
Computed tomography
Pandemic
Inflammation

How to Cite

Ata, Y., As, A. K., Engin, M., Kacmaz Kat, N. ., Setayeshi, T., Sunbul, S. A., Eris, C., Aydın, U., Ata, F., & Turk, T. (2021). Ability of Laboratory Findings upon Admission to Predict Lung Involvement and Its Severity in COVID-19 Patients Requiring Hospitalization. Iranian Red Crescent Medical Journal, 23(10). https://doi.org/10.32592/ircmj.2021.23.10.1183

Abstract

Background: The struggle of humanity with Coronavirus disease 2019 (COVID-19) infection, which affected the whole world and caused severe social and health crises, continues without deceleration.

Objectives: This study aimed to determine the relationship between the abnormal laboratory parameters upon admission and the intensity of lung involvement using chest computerized tomography severity score (CT-SS).

Methods: This single-center study evaluated a total of 242 patients who were admitted to our hospital due to COVID-19 with positive polymerase chain reaction (PCR) test results. The patients were divided into three groups of no involvement on thorax CT images, mild involvement, and moderate-severe involvement.

Results: The mean ages of groups 1 (n=42), 2 (n=123), and 3 (n=77) were 38±10.6, 56.3±16, and 61±15.6 years, respectively (P<0.001). The three groups showed significant differences in terms of hypertension, diabetes mellitus, heart rate, oxygen saturation, lymphocyte count, platelet-lymphocyte ratio (PLR), systemic immune inflammation index (SII), ferritin, troponin-I, erythrocyte sedimentation rate (ESR), and c-reactive protein (CRP) values (P<0.001). The CRP (R=0.545, P<0.001), ferritin (R=0.481, P<0.001), and SII (R=0.473, P<0.001) were moderately and positively correlated with CT-SS, while neutrophil-lymphocyte ratio (R=0.404, P<0.001), PLR (R=0.371, P<0.001), and ESR (R=0.327, P<0.001) were mildly and positively correlated with CT-SS.

Conclusion: The results of the present study showed that elevation in CRP, as well as ferritin and SII values upon admission to the hospital was significantly correlated with CT-SS. The results also revealed that the presence of lung parenchyma involvement might be predicted in PCR positive COVID-19 patients without the need for thorax CT. Furthermore, it is believed that this information will provide great convenience to the clinicians who first welcome the patient in terms of predicting COVID-19 lung involvement.

https://doi.org/10.32592/ircmj.2021.23.10.1183
HTML
pdf

References

  1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017. [PubMed: 31978945].
  2. Riahi T, Shokri S, Faiz SHR, Hemati K, Mousavie SH, Baghestani A, et al. Clinical and laboratory predictors of mortality in hospitalized COVID-19 patients. Iran Red Crescent Med J. 2021;23(5):e531. doi: 10.32592/ircmj.2021.23.5.531.
  3. Wang C, Horby, PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-3. doi: 10.1016/S0140-6736(20)30185-9. [PubMed: 31986257].
  4. Wu[S1]  Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-42. doi: 10.1001/jama.2020.2648. [PubMed: 32091533].
  5. Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30(8):4381-9. doi: 10.1007/s00330-020-06801-0. [PubMed: 32193638].
  6. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8. doi: 10.1016/j.jpha.2020.03.001. [PubMed: 32282863].
  7. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32-40. doi: 10.1148/radiol.2020200642. [PubMed: 32101510].
  8. Xie X, Zhong Z, Zhao W. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;296(2):E41-5. doi: 10.1148/radiol.2020200642. [PubMed: 32049601].
  9. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;296(2):E115-7. doi: 10.1148/radiol.2020200432. [PubMed: 32073353].
  10. Yang[S2]  R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiol Cardiothorac Imaging. 2020;2(2):e200047. doi: 10.1148/ryct.2020200047. [PubMed: 33778560].
  11. Kim L, Whitaker M, O'Halloran A, Kambhampati A, Chai SJ, Reingold A, et al. COVID-NET surveillance team. hospitalization rates and characteristics of children aged <18 years hospitalized with laboratory-confirmed COVID-19 - COVID-NET, 14 States, March 1-July 25, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(32):1081-8. doi: 10.15585/mmwr.mm6932e3. [PubMed: 32790664].
  12. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ. 2020;369:m1548. doi: 10.1136/bmj.m1548. [PubMed: 32312785].
  13. Karaca-Mandic P, Georgiou A, Sen S. Assessment of COVID-19 hospitalizations by race/ethnicity in 12 states. JAMA Intern Med. 2021;181(1):131-4. doi: 10.1001/jamainternmed.2020.3857. [PubMed: 32804192].
  14. Bhala N, Curry G, Martineau AR, Agyemang C, gyemang C, Bhopal R. Sharpening the global focus on ethnicity and race in the time of COVID-19. Lancet. 2020;395(10238):1673-6. doi: 10.1016/S0140-6736(20)31102-8. [PubMed: 32401716].
  15. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3. [PubMed: 32171076].
  16. Liu H, Chen S, Liu M, Nie H, Lu H. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging Dis. 2020;11(3):668-78. doi: 10.14336/AD.2020.0502. [PubMed: 32489711].
  17. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. doi: 10.1016/j.ijid.2020.03.017. [PubMed: 32173574].
  18. Zhang JJ, Cao YY, Tan G, Dong X, Wang BC, Lin J, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy. 2021;76(2):533-50. doi: 10.1111/all.14496. [PubMed: 32662525].
  19. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. doi: 10.1056/NEJMoa2002032.
  20. Garg S, Kim L, Whitaker M, O'Halloran A, Cummings C, Holstein R, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 - COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-64. doi: 10.15585/mmwr.mm6915e3. [PubMed: 32298251].
  21. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239-42. doi: 10.1001/jama.2020.2648. [PubMed: 32091533].
  22. Chang YC, Yu CJ, Chang SC, Galvin JR, Liu HM, Hsiao CH, et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: evaluation with thin-section CT. Radiology. 2005;236(3):1067-75. doi: 10.1148/radiol.2363040958. [PubMed: 16055695].
  23. Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT severity score: an imaging tool for assessing severe COVID-19. Radiol Cardiothorac Imaging. 2020;2(2):e200047. doi: 10.1148/ryct.2020200047. [PubMed: 33778560].
  24. Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, et al. Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol. 2020;30(12):6808-17. doi: 10.1007/s00330-020-07033-y. [PubMed: 32623505].
  25. Zhang J, Meng G, Li W, Shi B, Dong H, Su Z, et al. Relationship of chest CT score with clinical characteristics of 108 patients hospitalized with COVID-19 in Wuhan, China. Respir Res. 2020;21(1):180. doi: 10.1186/s12931-020-01440-x. [PubMed: 32664991].
  26. Inui S, Fujikawa A, Jitsu M, Kunishima N, Watanabe S, Suzuki Y, et al. Erratum: chest CT findings in cases from the cruise ship "diamond princess" with coronavirus disease 2019 (COVID-19). Radiol Cardiothorac Imaging. 2020;2(2):e204002. doi: 10.1148/ryct.2020200110. [PubMed: 33779623].
  27. Lessmann N, Sánchez CI, Beenen L, Boulogne LH, Brink M, Calli E, et al. Automated assessment of COVID-19 reporting and data system and chest CT severity scores in patients suspected of having COVID-19 using artificial intelligence. Radiology. 2021;298(1):E18-28. doi: 10.1148/radiol.2020202439. [PubMed: 32729810].
  28. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. [PubMed: 31986264].
  29. Huang S, Wang J, Liu F, Liu J, Cao G, Yang C, et al. COVID-19 patients with hypertension have more severe disease: a multicenter retrospective observational study. Hypertens Res. 2020;43(8):824-31. doi: 10.1038/s41440-020-0485-2. [PubMed: 32483311].
  30. Hernández-Garduño E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes Res Clin Pract. 2020;14(4):375-9. doi: 10.1016/j.orcp.2020.06.001. [PubMed: 32536475].
  31. As AK, Erdolu B, Duman B, Yazgan E, Eris C, Aydin U, et al. Can a modified-simplified pulmonary embolism severity index (m-sPESI) be used to predict the need for intensive care in hospitalized COVID-19 patients? J Thromb Thrombolysis. 2021;12:1-7. doi: 10.1007/s11239-021-02405-7. [PubMed: 33710508].
  32. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-7. doi: 10.1016/S2213-2600(20)30216-2. [PubMed: 32353251].
  33. Shang W, Dong J, Ren Y, Tian M, Li W, Hu J, et al. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 2020;92(10):2188-92. doi: 10.1002/jmv.26031. [PubMed: 32436996].
  34. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763-70. doi: 10.1016/S0140-6736(20)31189-2. [PubMed: 32442528].